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Abstract
This article reviews the microscopic origin of properties due to transition-metal
(TM) impurities, M, in insulator materials. Particular attention is paid to the
influence of pressure upon impurity properties. Basic concepts such as the
electronic localization in an MXN complex, the electrostatic potential, VR,
arising from the rest of the lattice ions or the elastic coupling of the complex
to the host lattice are initially exposed. The dependence of optical and magnetic
parameters on the impurity–ligand distance, R, in cubic lattices is discussed
in a first step. Emphasis is put on the actual origin of the R dependence
of 10Dq . Examples revealing that laws for strict cubic symmetry cannot in
general be transferred to lower symmetries are later given. This relevant fact
is shown to come from allowed hybridizations like nd–(n + 1)s as well as the
influence of VR. As a salient feature the different colour in ruby and emerald
is stressed to arise from distinct VR potentials in Al2O3 and Be3Si6Al2O18.
The last part of this review deals with electronic instabilities. The phenomena
associated with the Jahn–Teller (JT) effect in cubic lattices, the origin of
the energy barrier among equivalent minima and the existence of coherent
tunnelling in systems like MgO:Cu2+ are discussed. An increase of elastic
coupling is pointed out to favour a transition from an elongated to a compressed
equilibrium conformation. Interestingly the equilibrium geometry of JT ions in
non-cubic lattices is shown to be controlled by mechanisms different to those
in cubic systems, VR playing again a key role. The relevance of first principles
calculations for clarifying the subtle mechanisms behind off-centre instabilities
is also pointed out. Examples concern monovalent and divalent TM impurities
in lattices with the CaF2 structure. The instability due to the transition from the
ground to an excited state is finally considered. For complexes with significant
elastic coupling vibrational frequencies and the Stokes shift are expected to
undergo bigger changes through a chemical rather than a hydrostatic pressure.
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The reduction of Huang–Rhys factors upon increasing the pressure is discussed
as well.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

This review deals with the microscopic origin of physico-chemical properties associated with
impurities in insulating materials. Although the presence of impurities in a liquid or solid
compound can sometimes be undesirable they are in other cases the source of interesting
properties which are absent in the pure compound. In liquids the presence of solute molecules
gives rise to phenomena like the osmotic pressure or the decrease of the freezing point.
As regards solid compounds, impurities in iron and silicon are behind the industry of steel
and electronic devices, respectively, while doped insulating materials are involved in solid
state lasers [1, 2], scintillators [3–5], storage phosphors [6, 7], long-lasting phosphorescence
displays [8] and also gemstones [9–11]. In this domain special interest is raised by impurity
ions with an electronic open shell configuration or at least a first excited state lying in the optical
region. Throughout this article special attention is paid to impurity ions whose active electrons
are in the valence region, their optical and magnetic properties being thus particularly sensitive
to the environment. Most of the analysed systems involve 3d and 4d transition-metal (TM)
ions, although examples dealing with ns1 impurities (like Tl2+ or Ag0) will also be discussed.

From a basic standpoint there is an important difference between doped liquids and solids.
In the former case, the configurational entropy related to the rapid motion of solute molecules in
the solvent plays a key role for understanding microscopically a phenomenon like the osmotic
pressure [12, 13]. In a liquid solvent the time required by a solute molecule for travelling
a distance of 10 Å is about 10 ps, while in a doped crystalline solid well below the melting
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point that time can be days or even years [14]. This fact stresses that impurities in crystalline
solids can be viewed as anchored to a given lattice point. Therefore, in these cases only the
rapid vibrations around the equilibrium position or quick jumps among different conformations
contribute to the entropy and other thermodynamic functions.

Very different situations are experimentally found when truly diluted impurities in
insulators are considered. Sometimes, the impurity replaces a host lattice ion keeping the
local symmetry at least in the electronic ground state. This situation where only a symmetric
distortion of neighbour ions happens is just found for divalent impurities like Ni2+ or Mn2+ in a
cubic fluoroperovskite [15–20], or for Cr3+- or Fe3+-doped elpasolites [21–30]. However, there
are other cases where the impurity remains on-centre in the electronic ground state but there
is a non-symmetric distortion of neighbour ions leading to a reduction of the local symmetry.
This behaviour appears, for instance, when a static Jahn–Teller (JT) effect is taking place, such
as is found for d9 or d7 ion doped alkali halides, cubic perovskites or SrO [31–35].

The distortion of ligands and the subsequent lowering of local symmetry can also happen
for ions without orbital degeneracy in the ground state. A good example of this possibility
concerns Mn2+ in BaF2 [36–39] where the local symmetry is Td and not Oh as is found for
isomorphous lattices like CaF2 or SrF2 [40].

An impurity does not necessarily occupy a site of the host lattice. This is observed, for
instance, for hydrogen atoms in alkali halides [41] or CaF2 [42] as well as for Cu2+-doped
NH4X (X = Cl, Br) crystals grown from solutions where the impurity occupies an interstitial
position [43–47]. The off-centre motions undergone by ions which are initially at on-centre
positions also belong to this domain [48–57]. For instance, while Ni2+ in CaF2 replaces a Ca2+
ion, it has been well proved by means of electron paramagnetic resonance (EPR) and electron
nuclear double resonance (ENDOR) techniques that the Ni+ ion formed after x-irradiation
experiences a big off-centre displacement along 〈100〉 directions [50, 51]. This phenomenon,
responsible for drastic changes of the coordination number and associated properties of the
impurity, seems to be very subtle. In fact, it is observed for SrF2:Cu2+ [56] but not for Cu2+-
doped CaF2 [58]. Off-centre motions are also observed in cases like KCl:Li+ and KBr:Cu+
involving a closed shell impurity [59–61].

It is worth noting that the local geometry around an impurity can change significantly
on passing from the ground to an electronic excited state. As an example, low-temperature
luminescence spectra of Cr3+-doped cubic elpasolites reveal the existence of progressions
involving the Jahn–Teller mode eg [21–25]. This fact just means that in the 4T2g first
excited state (where active electrons are still localized) ligands display a tetragonal equilibrium
geometry and not an octahedral one [62, 63]. In other cases, the excited state can be close to or
just placed in the conduction band of the host lattice, leading to the appearance of an anomalous
luminescence with a big Stokes shift [64, 65]. This situation is found for some divalent rare
earth impurities like Sm2+ or Tm2+ but not for divalent 3d impurities like Mn2+ or Ni2+. Such
a different behaviour can be rationalized bearing in mind that the ionization potential for the
former ions is around 23 eV while for Mn2+ it is equal to 33.7 eV [39, 64–67].

More complex situations can appear when an impurity is joined to another defect. So,
in insulating lattices when an impurity ion Mm+ replaces a host cation An+, complex defects
involving vacancies can be formed when m > n [41, 32]. In other cases, charge compensation
occurs through the formation of a pair with another impurity. Well known cases are the
formation of M3+–O2− (M = Fe, Yb) [68–76] or Pb2+–OH− [77] pairs in lattices like KMgF3.

The presence of an impurity in a lattice breaks its translational symmetry. For this reason
a deep understanding of properties due to a pure compound seems in principle to be easier
than when impurities are introduced in it. Nevertheless, in the ground state of a pure insulating
compound electrons are localized [78–81] and this situation often remains when a TM impurity
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Figure 1. MXN complex inserted into the KMgF3 lattice.

is added. In the latter case active electrons coming from the impurity are usually (though not
necessarily always) localized in the MXN complex [82–84] formed by the impurity and the
N nearest anions or ligands (figure 1). The existence of this strong electronic localization
often allows one to understand the properties associated with an impurity in a given lattice by
considering only clusters involving fewer than 100 atoms [85–88, 19, 30, 57]. This fact just
points out that for properly explaining the properties of an impurity in an insulator it is not
necessary to know the right wavefunction of the whole crystal. This idea is thus connected with
the nearsightedness principle [89].

The search for a microscopic insight into properties coming from impurities in insulators
thus involves several steps: (i) knowledge of the local structure in the electronic ground state;
(ii) explanation of spectroscopic data (optical absorption maxima, EPR parameters, Raman
peaks, etc) reflecting the local equilibrium geometry in the electronic ground state; (iii) changes
of properties induced by variations of distances between the impurity and neighbour ions; (iv)
relation between the local geometry of the ground state and its electronic structure; and (v)
changes of the local structure on passing from the ground to an excited state and its influence
on the luminescent emission and the Stokes shift.

While in pure crystalline compounds the structure is well determined by means of standard
x-ray diffraction methods, such a technique is not useful for knowing the local structure around
an impurity. The extended x-ray absorption fine structure (EXAFS) technique can currently
provide good information about distances between the impurity and neighbour ions although
usually with errors of at least 1 pm [90–92].

The advent of reliable theoretical calculations has favoured a better microscopic
understanding of the five steps involved in the microscopic description of an impurity. Although
ab initio calculations are able to reproduce reasonably well the equilibrium impurity–ligand
distances and many spectroscopic parameters, the improvement introduced by calculations goes
far beyond this step. In fact, calculations allow one to explore the electronic properties of a
system in situations far from the equilibrium geometry, while experimental data on the ground
state are usually obtained at such geometry. Moreover, by means of calculations performed
for different electronic configurations and different basis sets it is much easier to clarify which
orbital is the main one responsible for a given property [93, 94, 57]. Examples illustrating the
importance of this procedure are offered in sections 3, 5 and 6.

Although the study on TM impurities in insulators is of interest in the research on deep
centres in semiconductors [95] and active centres of proteins [96], it goes far beyond the domain
of doped materials. Indeed, such an insight is also relevant for pure insulators where electrons
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are localized in the ground state. To this domain first belong the so-called Mott–Hubbard and
charge transfer insulators [97–99]. This kind of material should be metallic according to the
traditional band theory based in the mean field approximation. However, this discrepancy is not
surprising. Indeed, the dissociation limit of a simple molecule like H2 is not well reproduced
within such an approximated framework where the two electrons are allowed to be on the same
atom even when interatomic distances are much higher than ∼1 Å [100]. It is worth noting now
that many properties of a charge transfer insulator like NiO have been explained by considering
NiO10−

6 clusters [99, 101–103]. Even the magnetic behaviour of this kind of compound has
been accounted for by considering only clusters of fewer than 20 atoms [104, 105]. Along this
line, the crystal field spectrum of KNiF3 is found to be quite similar to that of KMgF3:Ni2+ [15].
Therefore, this fact points out that many optical features of both systems can be basically
understood only on the basis of the NiF4−

6 complex although in KNiF3 such complexes are
not isolated but ligands are shared [106].

An insight on the instabilities present in doped insulators can also shed some light on
phase transitions and related phenomena in pure compounds. So, the knowledge of the
interplay between electronic structure and local geometry for JT impurities can also be useful
for explaining the structure in pure compounds with a cooperative JT effect [107–110]. Also
some light on the origin of the ferroelectricity (present in insulating lattices like BaTiO3) can
be obtained through the study of off-centre motions experienced by impurities which convey
the creation of a local dipole moment [111, 112]. In the same way, an understanding of the
dynamic JT effect in doped cubic lattices [113] may be of help in the realm of manganites
with colossal magnetoresistance [109, 114–116] and copper oxoperovskites displaying high-Tc

superconductivity [117–119]. Finally the study of impurities centres can provide an insight
into the nature of defects formed in pure insulators under x-irradiation [120]. For instance, the
self-trapped hole formed in AgCl essentially corresponds to the AgCl4−

6 complex [120–122],
which is also found in chloride lattices containing Ag2+ impurities [31, 123]. Similarly, in pure
PbWO4 the electron is self trapped as a WO3−

4 complex [124, 125].
The present review is arranged as follows. Section 2 provides the basic theoretical

framework for explaining the properties of TM impurities in insulators as well as a review of
spectroscopic parameters. Section 3 deals with on-centre impurities in high-symmetry lattices.
In these model systems particular attention is devoted to laws governing the dependence of
spectroscopic parameters on the impurity–ligand distance, R, as well as their microscopic
origin. The case of on-centre impurities but with lower local symmetry is dealt with in section 4,
where the transferability of laws found for local cubic symmetry is analysed. Section 5 is
focused on JT impurities. Aside from discussing all phenomena in cubic lattices arising from
the JT interaction, attention is also paid to distortions on ligands produced in lattices which
are not cubic and thus orbital degeneracy is broken [108, 126, 127]. In section 6, devoted to
the microscopic origin of off-centre displacements, special attention is paid to underline the
differences with the JT effect. Finally, the last section is concerned with symmetric and non-
symmetric changes of the local geometry on passing from the ground electronic state to excited
states. This issue is relevant as regards the Stokes shift which in turn partially controls the
emission yield [128, 59, 39].

2. Impurities in insulators: basic concepts and spectroscopic parameters

2.1. Electron localization

As first pointed out by Kohn [78–81], the electronic density in the ground state of an insulating
material is made of fragments which are disconnected and have essentially a localized character.
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Table 1. Symmetry adapted linear combinations of p and s ligand orbitals. Coordinates are defined
in figure 1. In octahedral symmetry σ bonding is present in the antibonding eg orbital while in t2g

there is only π bonding. For this reason the two adapted linear combinations corresponding to eg

are sometimes referred to as χpσ and χsσ .

χp χs

eg 3z2 − r2 1√
12

{−2z(5)+ 2z(6)+ x(1)+ y(2)− x(3)− y(4)} 1√
12

{2s(5)+ 2s(6)− s(1)− s(2)− s(3)− s(4)}
x2 − y2 1

2 {−x(1)+ y(2)+ x(3)− y(4)} 1
2 {s(1)− s(2)+ s(3)− s(4)}

t2g xy 1
2 {y(1)+ x(2)− y(3)− x(4)}

xz 1
2 {z(1)+ x(5)− z(3)− x(6)}

yz 1
2 {z(2)+ y(5)− z(4)− y(6)}

Usually the electronic structure of crystalline compounds is described in the framework of
the mean field approximation and associated Bloch wavefunctions made from valence atomic
orbitals. However, such wavefunctions have an itinerant rather than a localized character. In
a simple insulating material like NaF all one-electron states of the valence band are filled.
Nevertheless, in this situation such a description is fully equivalent to considering a Slater
determinant composed of localized atomic or, more properly, Wannier wavefunctions [81, 100].
An aid for understanding this relevant result can be obtained by looking at the simple He2

molecule [100]. Here, the molecular orbital (MO) description and the Heitler–London picture
both give the same ground state wavefunction, while this is not the case for H2 made of two
non-closed shell atoms. This reasoning thus supports that a crystal like NaF can basically be
viewed as composed of ions. In this material the valence band is mainly built from 2p valence
orbitals of F− ions while the conduction band roughly arises from empty 3s orbitals of Na+ and
its bottom is placed ∼0.2 eV below the zero level [129]. If the ionization potential of free F−
is I0L = 3.4 eV [14] the centre of gravity of the valence band can be estimated to be at

εL = −I0L − eVA; VA = αe/RH (1)

where VA means the Madelung potential at an anion site, e is the proton charge, and RH the
interatomic distance of the pure host lattice. The Madelung potential also plays an important
role for understanding the properties of TM impurities. Let us consider a Ni+ impurity placed
at a cationic position in NaF. If I0M denotes the ionization potential of the free impurity ion
then the energy of the centre of gravity of the d levels can be estimated by

εM(d) = −I0M − eVC; VC = −αe/RH. (2)

In this case the Madelung energy −eVC at the cation site raises the d levels of the impurity.
For NaF:Ni+, using I0M = 18.1 eV [130] and −eVC = 10.9 eV, this simple estimation leads to
εM(d) ≈ −7.5 eV, implying that d levels lie above those coming from 2p(F−). As the 3d9 Ni+
ion has an open shell a transfer of electronic charge from F− ions close to the impurity can be
produced, implying that the total charge on the impurity, zM, is smaller than its nominal charge,
z∗

M. Within an MO framework in a cubic symmetry each |d, �〉 orbital of a free impurity ion
has to be replaced by an antibonding MO:

|ψ,�〉 = N{|d, �〉 − λp|χp, �〉 − λs|χs, �〉}. (3)

Here |χp, �〉 (|χs, �〉) means a suitable linear combinations of p (s) valence orbitals of
nearest anions or ligands belonging to the � irreducible representation (irrep) of the symmetry
group of the centre [83]. The corresponding bonding orbitals also involve an admixture of
ligand wavefunctions with appropriate |d, �〉 counterparts. Expressions for |χp, �〉 and |χs, �〉
corresponding to an octahedral unit are given in table 1. It is worth noting that for octahedral
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complexes the ligand s–p hybridization is symmetry allowed for eg antibonding levels but
forbidden for t2g orbitals. As in the ground state bonding orbitals are fully populated but there
are holes in the antibonding levels this produces a transfer of electronic charge from closed shell
ligands to the impurity. At the same time this process leads to a transfer of unpaired electron
density from the impurity to ligands.

If Na+ is replaced by a divalent TM impurity the flow of electronic charge from ligands
tends to increase [131]. Considering the NaF:Mn2+ system, if zM = 1.75 then the I0M value
is equal to 27 eV and thus εI(d) ≈ −16 eV [84]. Nevertheless, the Na+ → Mn2+ substitution
leads to an inward relaxation of close anions [132], raising εM(d) up to about −13 eV. This
simple reasoning points out that mainly 3d levels of Mn2+ would lie well below the bottom
of the conduction band of NaF. Because of this important fact, the flow of unpaired electron
density is basically stopped on ligands and thus the electronic properties coming from the
impurity can reasonably be explained solely in terms of the MXN complex whose equilibrium
distance is however influenced by the host lattice. This idea thus explains why the optical and
EPR data of cubic fluoroperovskites doped with the same divalent impurity look very similar
although they are not identical [15–20, 29, 133].

It should be noted that the flow of unpaired electron density beyond the complex region
can happen not only when the host lattice gap, Eg, decreases but also in highly ionic materials.
The latter situation can arise when the ground state of the impurity is lying close to the bottom
of the conduction band. If this circumstance is rare for the ground state of divalent impurities
in alkali and alkali earth halides [39], it is however found for KCl:Ag0 involving a neutral
impurity [134, 135]. If KCl (Eg = 8.4 eV [129]) is replaced by the more covalent AgCl
compound (Eg = 3.2 eV [136]), a substitutional Ag0 impurity at cationic sites seems to
be electronically unstable [135]. In lattices like AgCl or AgBr there are impurity centres
with an important electron delocalization which recalls that found for shallow impurities in
semiconductors [122, 137, 138].

2.2. Spectroscopic parameters of impurity centres with cubic or tetragonal symmetry

For the sake of clarity let us recall the optical and magnetic parameters associated with MXN

molecules embedded in a high-symmetry host lattice. A more detailed discussion can be found
in classical books on spectroscopy and ligand field theory [59, 83, 131, 139–141]. A typical
one-electron diagram for the ground state of a MX6 complex displaying cubic symmetry is
shown in figure 2. Aside from the d–d or crystal field (CF) transitions in an MXN complex,
electron jumps from a full ligand level to an empty antibonding one are also possible, leading to
the so-called charge transfer (CT) transitions [131]. In cubic symmetry crystal field multiplets
are characterized by the Racah parameters B and C as well as by the cubic field splitting,
10Dq , between antibonding eg (∼3z2 − r 2, x2 − y2) and t2g (∼xy, xz, yz) levels [83]. It
is worth noting that the value of B and C parameters derived from experiments is usually
smaller than B0 and C0 corresponding to the free impurity ion [83, 131, 139, 140]. This
fact is an indirect consequence of the transfer of unpaired electron density described by
equation (3). For a given impurity, the covalence increases following the decrement of optical
electronegativity [131], thus implying that an MBrN complex is more covalent than MFN at
normal pressure. By the same reason CT transitions are significantly red shifted along the
series MFN → MClN → MBrN . The onset of CT transitions of MX4−

6 (M = Cu, Ag,
Ni, Rh; X = Cl, Br) [142–144], CrCl3−

6 [145] and FeCl4−
6 [28] complexes lies in the optical

region while that for CrF3−
6 [146, 147, 26] and MnCl4−

6 [142, 143] complexes is at 64 000
and 58 000 cm−1, respectively. A band peaked at 59 000 cm−1 in NaMgF3 [148] can thus
hardly be ascribed to a CT transition of an MnF4−

6 complex, but it could arise from a 3d → 4s
transition [149].
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Figure 2. Molecular orbital diagram corresponding to an octahedral MXN complex. Atomic levels
of the transition-metal impurity, M, (ligand anions, X) are depicted on the left-hand (right-hand) side
of the diagram. The crystal field splitting energy, 10Dq, and one metal to ligand charge transfer
(CT) transition are also shown.

As the CT transitions observed experimentally are electric dipole allowed they are usually
more important than CF ones as regards the polarizability of the complex and thus its Raman
activity [150]. The observation of local vibrations due to an MXN complex in a host lattice
through Raman spectroscopy is thus enhanced if the laser frequency can correspond to a CT
transition [150–153].

A precise description of the localization of unpaired electrons and, at the same time,
of the covalency in an MXN complex in a host lattice can be obtained through EPR and
ENDOR spectra. In fact, the spins of nuclei close to the unpaired electron density can be
detected through such techniques. However, this task can hardly be achieved by means of usual
optical measurements due to broadening of zero-phonon lines caused by unavoidable random
strains [59, 150]. In the case of rare earth impurities this drawback has been overcome through
the hole burning technique [153].

The experimental information derived from EPR is condensed in the effective spin
Hamiltonian, Hs. For an S = 1/2 complex, a typical spin Hamiltonian is [139, 141]

Hs = βS[g]H + S[A]I +
N∑

l=1

S[Tl]Il . (4)

The first and second terms in Hs mean the Zeeman and hyperfine contributions,
respectively. The last term depicts the superhyperfine interaction with N ligand nuclei. As a
salient feature, Hs should reflect the local symmetry of the impurity centre [139]. As [g] and [A]
are second-order tensors they are reduced to only one diagonal component in cubic symmetry
while in tetragonal symmetry the diagonalized [g] tensor involves two different components,
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called g‖ and g⊥. For a purely ionic d9 complex displaying an elongated octahedral geometry
the expressions of g‖ and g⊥ are simply given by [139]

g‖ = g0 + 8ξM/�xy; g⊥ = g0 + 2ξM/�xz,yz (5)

where �xy just means the xy → x2 − y2 CF excitation energy and ξM is the spin–
orbit coefficient of the free d9 ion. As �xy ≈ �xz,yz , equation (5) predicts that (g‖ −
g0)/(g⊥ − g0) should be close to 4, provided bonding in the d9 complex is ionic. Although
experimental data on d9 complexes with small or moderate covalency follow this rule [31],
important departures appear in complexes where the unpaired electron spends more time on
ligands [154]. A particular amazing situation is found for CdBr2:Ag2+ [155] and in irradiated
AgBr0.85Cl0.15 [156] where EPR supports the formation of elongated AgBr4−

6 complexes. In
these cases the [g] tensor is found to be practically isotropic. For instance g‖ = 2.072 and
g⊥ = 2.067 are measured for CdBr2:Ag2+ [155]. This surprising experimental fact can
reasonably be understood by considering the following [154–157]: (i) the covalency (described
by equation (3)) involved in the antibonding ∼x2 − y2 level where the unpaired electron is
placed; (ii) the contribution of CT excitations to the [g] tensor, whose importance growths with
the covalency of the bonding; (iii) the inclusion of the ligand spin–orbit interaction. It is worth
noting that the spin–orbit coefficient, ξL, for a free ligand is just equal to ξL = 2400 cm−1 for
Br− which is a bit higher than ξM = 1800 cm−1 for free Ag2+ and about three times bigger
than ξM = 830 cm−1 for free Cu2+. The importance of CT excitations for explaining the
experimental [g] tensor of other impurities has also been underlined [158–162].

More direct information on covalency is embodied in the superhyperfine interaction given
in equation (4). The invariance of the whole superhyperfine interaction under the symmetry
operations of the local symmetry group implies that any [Tk ] tensor in equation (4) has to
be invariant but only under the operations which do not modify the k ligand. In the case of
octahedral (cubic) coordination this subgroup is C4v (C3v), thus implying that the diagonal [Tk]
tensor involves two different components: T‖ corresponds to the line joining the impurity and
the k ligand and T⊥ to the perpendicular plane. T‖ and T⊥ are usually written as

T‖ = As + 2Aan; T⊥ = As − Aan. (6)

For octahedral complexes with unpaired σ electrons As mainly comes from the admixture
of valence s orbitals of ligands in eg orbitals, being thus proportional to λ2

s in
equation (3) [83–139]. Calling λσ and λπ the λp coefficients in equation (3) for eg and t2g

orbitals, respectively, Aan depends in general on both λ2
σ and λ2

π quantities. For octahedral
d8 complexes, where there are only unpaired electrons in the eg orbital, it is λ2

σ which mainly
determines Aan. The relation between Aan and λ2

σ and λ2
π for a d5 impurity is more complex in

cubic than in octahedral coordination as in this case σ ligand levels are not along a 〈111〉 type
direction but form an angle, θσ , with it [163]. Calculations are thus required for knowing this
relevant quantity (which cannot be known from symmetry) for interpreting experimental Aan

values.
The interpretation of the hyperfine tensor [A] associated with TM impurities requires us

to go beyond the usual molecular orbital description where a filled orbital does not give rise
to any contribution [139]. Let us consider, for instance, a d5 ion like Mn2+ or Fe3+ in the
high-spin configuration 6A1g under cubic symmetry, where the diagonal component of [A] is
called simply A. For p and d electrons, the hyperfine interaction described in the effective
Hamiltonian (4) comes only from the magnetic dipole term in the real Hamiltonian, involving
orbital operators like (3z2 − r 2)/r 5. As the expected value of this kind of orbital operator
for an A1g state is zero it turns out that the A parameter should be equal to zero. However,
this fact is contrary to experimental findings for Mn2+ and Fe3+ impurities derived through
EPR and Mössbauer spectroscopies [139, 164]. This puzzling fact reflects the polarization of
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Figure 3. Left: description of the substitutional CuBr4(NH3)
2− complex formed inside the NH4Br

lattice. Cu2+ does not replace the host lattice cation but it is located interstitially. Right: picture of
the VR(r) potential for the CuBr4(NH3)

2− complex embedded in NH4Br. The origin is taken at the
Cu2+ ion. Results are shown for r along Cu–Br and Cu–N directions.

inner 1s, 2s and 3s shells of cations due to the exchange interaction with unpaired valence
electrons. If there is an unpaired electron with spin up in the open shell, the wavefunction of
1s electrons with spin up is not the same as that for electrons with spin down. In comparison to
the 1s↓ electron the 1s↑ one can be closer to 3d↑ as the latter electron will never be at the same
point simultaneously. This fact thus implies a negative spin polarization on the nuclei and then
a non-zero contribution of the isotropic Fermi contact interaction [139].

Polarization of closed shells can play an important role in understanding the superhyperfine
tensor in cases where the contribution coming from the simple bonding description (3) is zero.
This happens, for instance, for d9 ions in an elongated octahedral geometry with an unpaired
electron in the x2 − y2 orbital. Although any admixture with p and s valence orbitals of axial
ligands is symmetry forbidden the corresponding superhyperfine interaction has sometimes
been detected through EPR [165].

For d impurities with S > 1/2 the zero-field splitting term, HZFS, has to be included into
the spin Hamiltonian (4) when the local symmetry changes from Oh to D4h [139, 141]:

HZFS = D(S2
z − S2/3). (7)

This term reflects the partial raising of the degeneracy compatible with the symmetry and
the Kramers theorem.

2.3. Influence of the rest of the ions in the lattice upon the complex

Although very often active electrons coming from a transition-metal impurity M are confined
in the MXN complex this does not mean necessarily that its properties can be explained by
considering only the complex in vacuo. In fact, the electrons of the MXN complex also
experience the electrostatic potential, VR, arising from the rest of the ions in the lattice.
However, it was first pointed out by Sugano and Shulman [82] that, for cubic crystals, VR

is almost (but not exactly) flat in the complex region and thus the influence of VR for explaining
the properties of TM impurities is usually ignored. Nevertheless, it has been pointed out that
VR can play an important role not only when the local symmetry is lower than cubic but also
in understanding the different properties displayed by the same impurity embedded in two
non-isomorphous lattices [166]. Let us first consider the CuX4(NH3)

2−
2 centre (X = Cl, Br)

formed in lattices like NH4Cl, CsCl or NH4Br (figure 3(a)) [43–47]. Although the host lattice
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Figure 4. Representation of the electrostatic potential due to the rest of the lattice, VR, on the FeF3−
6

complex embedded in LiF, K3FeF6 and KMgF3, along a metal–ligand direction.

is cubic the Cu2+ impurity is not substitutional but occupies an interstitial position and thus
the local symmetry around Cu2+ is tetragonal. The influence of VR on electrons lying in
the CuX4(NH3)

2−
2 complex [47] is depicted in figure 3(b) through the quantity (−e)VR (r)

(e = proton charge). For this kind of complex VR is flat just around r = 0 due to the existence
of inversion symmetry. However, when the electron is far from the origin (where the impurity
is placed) significant deviations from flatness are exhibited by the VR function. As shown
in figure 3(b), VR raises the levels coming from NH3 ligands while it depresses those from
X− ones.

The electrostatic potential arising from the rest of the ions in the lattice can even be
important for impurities in a true local cubic symmetry [30, 166]. In these cases VR can lead to
subtle differences when the properties generated by the same impurity in two non-isomorphous
lattices are compared. For the sake of clarity let us consider an octahedral MX6 complex
embedded in cubic lattices like perovskites, alkali halides with NaCl structure or elpasolites.
The form of VR along a metal–ligand direction [30] for these three types of cubic lattice is
displayed in figure 4. For a perovskite lattice (−e)VR(r) induces an energy decrement when
the electron is close to a ligand and thus this energy lessening should be more important for
a σeg orbital than for a t2g orbital which has a π character. By contrast, in the case of alkali
halide or elpasolite structures, (−e)VR(r) induces (figure 4) an increase of the energy of eg and
t2g levels. Therefore, if the influence of VR(r) is more significant on the eg orbital than on the
t2g one it can be expected that VR(r) leads to a supplementary increase of 10Dq .

Examples showing the key role played by VR for explaining the properties of complexes
in low lattice symmetry lattices are given in sections 4 and 5.

2.4. Elastic coupling of the complex with neighbour ions of the rest of the lattice

Even if valence electrons coming from an impurity M are confined within an MXN complex,
equilibrium distances and vibrational properties cannot in general be understood through the
complex in vacuo [167, 168]. This means that elastic interactions of ligands with neighbour
ions of the rest of the lattice are important as regards the frequencies of local or resonant
modes which are often observed in low-temperature optical spectra [169, 21–25]. A simple
model [168] for describing the elastic coupling of a complex with neighbour ions of the rest of
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k,g k',g'

Figure 5. Model representing the elastic metal–ligand and ligand–next-neighbour bonds connected
by springs with parameters (k, g) and (k ′, g′), respectively. k and k ′ are force constants while g and
g′ describe the anharmonicity as detailed in equation (47).

the lattice is depicted in figure 5. The constant k describes the interaction between the impurity
and ligands of the MXN complex in the harmonic approximation while k ′ simply depicts the
interaction of ligands with neighbour ions of the rest of the lattice. When the nominal charge of
the impurity is higher than that of the substituted lattice ion, the elastic decoupling with the rest
of the lattice is favoured. This situation has been well verified in the case of divalent impurities
in alkali halide lattices where it is found that k � k ′ [94, 33]. In these cases, the equilibrium
impurity–ligand distances are only slightly dependent upon the host lattice. For instance, it has
been found [84] that on passing from KCl (RH = 3.14 Å) to RbCl (RH = 3.29 Å) the distance,
R, between the Tl2+ impurity and Cl− ligands increases only by 0.02 Å. In other words, the f
quantity

f = �R/�RH (8)

is equal only to ∼0.1. A similar situation can be encountered in an elpasolite host lattice [26]
where adjacent trivalent ions do not have any common ligand [170]. The degree of elastic
coupling increases for cubic fluoroperovskites like KMgF3 doped with divalent cations such
as Mn2+ or Ni2+ (where f ≈ 0.3) [132, 18–20] while for Cu2+-doped cubic oxides like
MgO, CaO and SrO the impurity–ligand distance is determined mainly by the host lattice
( f ≈ 0.7) [171].

In principle an impurity modifies the position of ions other than nearest neighbours.
Nevertheless in a three-dimensional compound the components of the strain generated by
the impurity depend on R−3

I , where RI stands for the distance between an ion and the
impurity [172]. When |(R/RH) − 1| ≈ 5% it is thus not unreasonable to assume that other
ions outside the complex keep their host lattice positions [19]. However, in cases like KCl:Ag0

where |(R/RH)− 1| = 20% second neighbours along 〈100〉 directions are found to experience
a significant relaxation as well [135].

3. Pressure influence on spectroscopic parameters of model systems

3.1. Relevant experimental data

3.1.1. Optical data. Since the early work by Drickamer [101], it is known that Racah
parameters B and C are, in general, less sensitive to the influence of an applied hydrostatic
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pressure than 10Dq [173–175]. The first measurements carried out on the cubic charge transfer
insulator NiO [176] showed that the dependence on the metal–ligand distance at different
hydrostatic pressures can be written as

10Dq = K R−n . (9)

For NiO a value n = 5 was found [176]. A similar law was derived for ruby with an exponent
n = 4.5 obtained assuming that the local compressibility around Cr3+ is the same as for
pure Al2O3 [173, 175]. Values of the exponent n close to 5 have also been found in the
cubic compound NH4MnCl3 [177] and for other cubic systems like K2NaGaF6:Cr3+ [178],
Cs2NaYCl6:Cr3+ [179] explored through different applied hydrostatic pressures.

The effects of changing the host lattice embedding the MX6 complex upon both 10Dq and
R has also been investigated. As an example, the CF spectra of RbMnF3, KMnF3, KMF3:Mn2+
(M = Mg, Zn), RbCaF3:Mn2+, RbCdF3:Mn2+ and CsCaF3:Mn2+ have been explored through
optical spectroscopy [18, 180]. In the case of doped systems the information was derived
from the excitation spectra of the only luminescent channel 4T1g → 6A1g. For these systems
B and C parameters have been found to vary slightly along the series of compounds, while
10Dq is quite sensitive to the chemical pressure, the exponent n being equal to 4.7 [180].
This figure is quite comparable to those found by applying a hydrostatic pressure on a given
system and thus stresses that the 10Dq value is originated inside the MnF4−

6 complex indeed.
Recently, the properties of KMgF3:Mn2+ and RbCdF3:Mn2+ have been studied by means of
density functional theory (DFT) based calculations performed at different values of the lattice
parameter a [181]. Through this kind of ab initio calculation it is thus possible to simulate the
effects of pressures (positive and also negative) on both systems. As a salient feature, when
pressure induces the same R value for both KMgF3:Mn2+ and RbCdF3:Mn2+ the calculated
value of 10Dq is found to be the same for such systems. On the other hand, the equilibrium R
values for different fluoroperovskites doped with Mn2+ are found to be ordered, following the
a parameter of the host lattice [181, 19].

The different sensitivity of Racah parameters and 10Dq to R changes can be well seen
looking at CrO9−

6 complexes formed in oxides where 10Dq values are in the range 16 000–
18 000 cm−1 [10, 173, 175]. Therefore, as the energy, E , of the 4A2g(t32g) → 4T2g(t2

2geg)

transition is just equal to 10Dq [83] it can be expected that dE/dR ≈ 400 cm−1 pm−1. This
can be compared with the value dE/dR = 7 cm−1 pm−1 derived for the 2Eg(t32g) → 4A2g(t32g)

sharp transition in ruby [173, 182].
It is worth noting that this huge difference in sensitivity to pressure has important

consequences as regards the shape of bands related to both transitions. In fact, the Huang–
Rhys factor, Sa, reflecting the coupling of the excited state with the symmetric a1g mode,
is proportional to (dE/dR)2 [183, 179, 175]. For CrF3−

6 complexes in cubic fluorides the
Huang–Rhys factors for the excited 4T2g(t2

2geg) state corresponding to a1g and eg modes both
lie between 1 and 2 [63, 183]. Therefore, vibrational progressions involving both modes can be
observed in the low-temperature optical spectra [21–25]. By contrast, if Sa for the 2Eg(t32g) state
is expected to be ∼4 × 10−4 then no vibrational replica should in practice be observed, thus
leading to a sharp 2Eg(t32g) → 4A2g(t32g) band. Additional discussion on this matter is given in
section 7.

The 10Dq parameter can be used for monitoring the R changes induced by an applied
hydrostatic pressure on a doped lattice. It can also be employed for measuring the effects of
different chemical pressures on the impurity–ligand distance [180, 18]. In the latter case this
procedure can rigorously be applied only if all host lattices where the MXN complex is inserted
are isomorphous. Further discussion on this issue is provided in section 4.
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Table 2. Experimental As and Aan values (in MHz) measured for Ni2+ in several cubic
fluoroperovskites. The values of the estimated Ni2+–F− distance, R, and the corresponding for
the perfect lattice, RH, are also given. Data are taken from [20].

Lattice RH (Å) R (Å) As Aan

KMgF3 1.987 1.99 117.6 30.3
CsCdF3 2.263 2.05 93.6 27.9
CsCaF3 2.281 2.06 90.3 28.5

Experimental information on dE/dR values for CT transitions of model systems is
scarcer than for crystal field excitations. No measurement of a CT transition related to a 3d
impurity in pure octahedral symmetry under a hydrostatic pressure has been reported up to
now. Nevertheless, the influence of the chemical pressure upon the allowed CT transitions
can be well seen in the magnetic circular dichroism data obtained for Tl2+ impurities (6s1

configuration) in several alkali halides [184]. For instance, on passing from KCl to RbCl the
first allowed CT undergoes a red shift of 1200 cm−1. As R is calculated to increase by 2 pm [84]
on passing from KCl:Tl2+ to RbCl:Tl2+ this means a value dE/dR ≈ −600 cm−1 pm−1.
Similar values were found for compounds involving square-planar CuCl2−

4 units [84].
The significant sensitivity of CT transitions to R changes is also supported by the

blue shift experienced upon cooling in the case of divalent 3d ions in alkali chlorides and
bromides [142, 143]. Assuming that such a blue shift is mainly due to thermal expansion
effects, values of dE/dR between −500 and −1000 cm−1 pm−1 are derived. Calculated values
of CT transitions [84] for different complexes underline that, in general, this kind of transition
does depend more strongly on R than CF ones. This trend is also consistent with the bigger
bandwidths of CT transitions in comparison to those displayed by CF excitations.

3.1.2. Hyperfine constants for octahedral complexes with σ bonding in the ground state.
For octahedral centres of Mn2+ or Fe3+ impurities in halide lattices, the ground state usually
corresponds to the high-spin configuration 6A1(t3

2ge2
g) [139]. Thus, in these cases as well as for

Ni2+ impurities in a similar situation (ground state 3A2(t62ge2
g)), there are also unpaired electrons

in the antibonding eg level with σ bonding. Unpaired eg electrons can be present in the ground
state of Mn3+ (t3

2ge1
g configuration), Rh2+(t6

2ge1
g configuration) or Cu2+(t62ge3

g configuration). In
all these cases the JT instability favours however a non-cubic equilibrium geometry. This point
is discussed in section 5.

The Ni2+ impurity in several cubic fluorides has been investigated by means of EPR
and ENDOR spectroscopy [16, 20, 139, 185]. Measured values of the two superhyperfine
constants, Aan and As, for doped cubic fluoroperovskites are gathered in table 2. It can
be noticed that while the reported Aan value is practically the same for all systems the As

value for KMgF3:Ni2+ is about 30% higher than that for CsCaF3:Ni2+. A similar situation
is found when dealing with Oh MnF4−

6 or FeF3−
6 units in cubic lattices [17, 29, 30] and also

for elongated NiF5−
6 complexes or square-planar NiF3−

4 units where the unpaired electron lies
in a b1g ∼ x2 − y2 orbital [165]. The results of table 2 strongly suggest that As is much
more sensitive than Aan to R variations induced by the chemical pressure. As for NiF4−

6 the
anisotropic constant, Aan, is related to λ2

σ , this fact suggests that λ2
s strongly depends on R but

not λ2
σ . This conclusion is certainly surprising as the covalency is dominated by the transfer of

the eg unpaired electrons from nickel to 2pσ orbitals of fluorine ligands. More precisely, from
the analysis of Aan and As parameters there is found [20] a ratio λ2

σ /λ
2
s ≈ 6 for NiF4−

6 in cubic
fluoroperovskites.
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The experimental As parameter has been used for measuring the variations of R
produced by the action of different cubic lattices upon octahedral NiF4−

6 , MnF4−
6 and FeF3−

6
complexes [132, 20, 30]. Writing

As = C R−ns , (10)

values of the ns exponent in the range 6.5–8 have been encountered. For NiF4−
6 complexes in

fluoroperovskites (table 2) ns = 7.6, implying dAs/dR = −3.5 MHz pm−1.
Alternatively the dependence of As on R has been modelled [132] by considering that it is

proportional to the λ2
s coefficient defined in equation (3), while λs is just given by

λs = cSs; Ss = 〈d, �|χs, �〉 (11)

where c � 1 is a constant and Ss is a group overlap integral involving the valence s
orbitals of ligands. The analysis through equation (11) of the experimental As value for
Ag0- and Cu0-doped alkali halides has provided strong evidence of a huge relaxation of
ligands [186, 134, 135].

EPR data on Mn2+-doped cubic fluoroperovskites reveal that, within experimental
uncertainties, the measured hyperfine constant, A, is the same and equal to −273±3 MHz [17].
This is quite reasonable bearing in mind that A comes from the spin polarization of inner 1s,
2s and 3s shells [139]. Careful ENDOR measurements of A carried out on CsCaF3:Mn2+
(A = −276.7 MHz) [187] and MgF2:Mn2+ (A = −274.2 MHz) [188] suggest that dA/dR ≈
−0.4 MHz pm−1. This figure, also obtained through calculations on MnF4−

6 [166], underlines
that A−1(dA/dR) is two orders of magnitude smaller than A−1

s (dAs/dR).

3.2. Microscopic insight

This section is addressed to gaining a better insight into the origin of main facts described in
section 3.1 with the help of calculations and physical models.

3.2.1. Charge transfer transitions. Let us now mention the results of theoretical calculations
carried out on octahedral MX6 (X = F, Cl, Br) complexes [26, 84, 147, 189] and tetrahedral
units like FeO2−

4 or CrO4−
4 [190–194]. Typically, they lead to values of dE/dR in the range

between −500 and −1500 cm−1 pm−1 for allowed CT transitions involving d levels with σ
character. So, for the first CT transition there are calculated values dE/dR ≈ −1600,−900
and −530 cm−1 pm−1 for CrF3−

6 , CrO4−
4 and TlCl4−

6 , respectively [84, 147, 189, 192]. Also
for the CT transitions of the square-planar CuCl2−

4 unit the corresponding dE/dR value for the
first allowed CT transition eu → b1g(x2 − y2) is found to be equal to −600 cm−1 pm−1 [84].
It is worth noting that in the case of CrF3−

6 complexes a value dE/dR ≈ −1100 cm−1 pm−1

has been found for the t1u → t2g transition, where t2g(xy, xz, yz) has a π character. Then,
this quantity is again negative but its absolute value is, as expected, smaller than |dE/dR| ≈
1600 cm−1 pm−1 found for the t1u → eg(x2 − y2, 3z2 − r 2) transition [147].

Aside from confirming the strong sensitivity of CT maxima to R variations these data
suggest that dE/dR is negative for octahedral and tetrahedral complexes. This fact means
that the CT energy of an octahedral complex should experience a blue shift under an applied
hydrostatic pressure. In other words, as the bulk modulus is always positive then

(∂E/∂p)T > 0 (12)

for a CT transition corresponding to an octahedral complex.
It has been pointed out that all these facts are mainly due to the increase of electrostatic

repulsion of ligands on electrons lying in the impurity when R decreases [84, 192]. For
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clarifying this matter it is helpful to consider an ionic MX6 complex in a cubic lattice.
Equations (1) and (2) can then be written as

εM(d) = −I0M − eVC = −I0M − 6zLe2/R − eVR

εL = −I0L − eVA = −I0L + (e2/R)(−3.32 zL − zM)− eVR.
(13)

Here zL means the total charge on the ligand ion and VR is the electrostatic potential due to
all ions in the rest of the lattice not included in the complex. As for a cubic lattice VR is very
flat along the complex region, the sensitivity of εM(d)− εL to R changes can be mainly due to
terms involving 1/R in (9). Therefore, dE/dR can be approximated by

dE/dR ≈ −(zM − 2.68zL)e
2/R2. (14)

Then, taking zM = 2, zL = −1 and R = 2.2 Å the simple equation (14) leads to
dE/dR = −1100 cm−1 pm−1. Although this simple estimation explains the sign and the
absolute values of dE/dR for CT transitions the situation becomes more complex as the
covalency increases. This circumstance is favoured by an increase of the nominal charge of
the impurity ion. There are three factors favouring a reduction of dE/dR with respect to the
value expected for a pure ionic situation when the covalency increases progressively [192]: (i)
the values of |zL| and especially zM are lessened; (ii) I0M and I0L in equation (13) should now
be understood to depend on the actual value of zM and zL charges which can be non-integer;
(iii) when the electron jumps to an antibonding level it also spends some time on ligands.

For an ionic complex one would expect that a CT transition leads to a transfer of an electron
from ligands to the impurity cation. However, calculations reveal that the total charge, zM, on
the impurity in the CT state can be quite close to that of the ground state [195, 194, 192, 26].
This important phenomenon cannot be understood considering that one-electron orbitals are
unmodified after the CT jump. In fact, once a hole is created on a ligand orbital there is a
significant relaxation of electronic orbitals inducing a net flow of the electronic charge from
metal to ligands. This effect increases the value of zM and I0M, thus lessening the energy of the
CT state. The electronic relaxation is accomplished by an increase of the electronic density on
the metal for antibonding levels as well as by the corresponding reduction for filled bonding
orbitals. A more detailed discussion on this matter can be found in [84].

3.2.2. Unpaired spin densities and superhyperfine constants. Different calcula-
tions performed for octahedral complexes like NiF4−

6 , MnF4−
6 or FeF3−

6 have found
that [83, 196–199, 30]: (i) the electronic charge, ∼λ2

σ , transferred to 2pσ orbitals of F− ligands
in the antibonding eg level, is much higher than λ2

s describing the corresponding electronic
charge on 2s orbitals; (ii) λ2

s is found to be much more sensitive than λ2
σ to R variations and the

calculated R dependence of λ2
s is consistent with the ns exponent derived from experimental

As values lying typically between 6 and 8.5.
Although these conclusions concur with the analysis of experimental superhyperfine

constants given in section 3.1.1 it is however necessary to understand the main origin of these
relevant facts [200, 84].

As depicted in equation (3), chemical bonding in a MX6 complex produces an admixture of
a |d, �〉 metal wavefunction with the corresponding |χp, �〉 and |χs, �〉 ligand wavefunctions.
In the traditional molecular orbital picture this admixture arises from the off-diagonal
matrix elements 〈d, �|h|χp, �〉 and 〈d, �|h|χs, �〉 involving the one-electron Hamiltonian,
h [83, 201]. For an MX6 complex with high ionic character λσ can thus be approximated by

λσ = 〈d, �|h|χpσ 〉
εM(d)− εL(p)

. (15)
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Figure 6. Molecular orbital diagram showing the interactions between metal and p and s ligand
orbitals responsible for the cubic field splitting energy, 10Dq, in an octahedral MXN complex.

Here εM(d) and εL(p) are the one-electron energies of the impurity d level and the p valence
orbital of a ligand, respectively. Assuming now that the R dependence of 〈d, �|h|χpσ , �〉
roughly follows that of the group overlap integral

Spσ = 〈d, �|χpσ , �〉, (16)

then the absolute value of the numerator in equation (15) does increase when the MX6 complex
is squeezed. However, the denominator, εM(d) − εL(p), in equation (15) essentially means a
CT excitation and thus, according to results of the preceding section, it also increases when R
decreases. The substantial cancellation of the increase of Spσ by that of εM(d)− εL(p) is thus
responsible for the slight dependence of λ2

σ on R [200]. This fact is also relevant because as
λ2
σ � λ2

s it also suggests that N2
e in (3) and the total charge, zM, on the central atom are slightly

dependent on R.
The quite different behaviour displayed by λ2

s and λ2
σ parameters is ultimately related

to the big separation between valence s and p levels of common ligands like halide ions or
O2− [132, 200]. It is well known that the separation between such levels is strictly zero if
the central field potential is Coulombian [202]. For this reason the s–p separation increases
progressively along a row of the periodic table. So the 2s–2p separation is equal to 1.9 eV
for Li and 4.5 eV for carbon, while at the end of the series it reaches a value close to 17 eV
for oxygen and around 23 eV for both the fluorine atom and F− ion [130, 84]. Owing to this
relevant fact, the 2s level can play an equivalent role to that of 2p orbitals in the chemical
bonding of elements like Li, Be or C but never when fluorine or oxygen are involved, where
the 2s admixture should have a perturbative character.

Bearing in mind figure 6, similarly to equation (11) there can be written for λs

λs = 〈d, �|h|χsσ 〉
εM(d)− εL(s)

. (17)

Because of the big separation between the d levels of the impurity and the s valence orbital
of the ligand ion, in this case the relative variation of the εM(d) − εL(s) quantity is certainly
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Table 3. Calculated values of 10Dq (in cm−1) for CrF3−
6 at two different distances (in pm) through

a normal calculation and another one where the 2s(F) orbitals are removed from the basis set. First
(second) row values (taken from [93]) have been obtained by the self-consistent charge extended
Hückel (MSX α) method.

R 10Dq (normal) 10Dq (calculation without 2s)

185 18 538 3600
18 800 6025

195 13 782 3917
14 920 7238

much smaller than that of εM(d) − εL(p) and it can thus be considered as a constant in the
�R ∼ 10 pm interval. On the other hand, the overlap integral Ss varies more strongly with R
than Spσ following the more internal character of the valence s orbital when compared to the
corresponding p orbital. Both reasons are thus responsible for the high sensitivity of As to R
variations, and they also explain why λ2

σ � λ2
s for octahedral MX6 complexes with halides or

O2− as ligands [84].

3.2.3. Crystal field transitions: the dependence of 10Dq upon R. Even recently the
R dependence of 10Dq observed experimentally for octahedral MX6 complexes has been
explained on the basis of the CF theory [23, 25]. In this framework, 10Dq is given by [83]

10Dq = 5

3

|zL|e2〈r 4〉d

R5
. (18)

This expression is consistent with an R−5 dependence of 10Dq , but it also leads to values
of the cubic field splitting which may be one order of magnitude smaller than experimental
ones [18, 84]. The pioneering work by Sugano and Shulman [82] on the octahedral NiF4−

6 unit
already demonstrated that the 10Dq splitting mainly arises from the different chemical bonding
in the antibonding eg and t2g levels of a properly considered MX6 complex. It is worth noting
that in this case σ bonding is present in eg while not in the t2g level which only exhibits π
bonding (figure 6).

Calculations performed treating the d and ligand levels on the same footing have been
able to reproduce the main features observed experimentally for CF spectra of MX6 molecules
embedded in insulating lattices. So, since the first work by Burns and Axe [203] it was noted
that theoretical calculations of MX6 complexes lead to reasonable values of both 10Dq and the
exponent n defined in equation (6). The value of this exponent was found to lie typically in the
range 3.5–6 [204–207, 183, 167, 26].

The use of different basis sets has shed light on the origin of the R dependence of
10Dq [93, 208]. For the sake of clarity let us now consider the CrF3−

6 complex. In a first
step normal calculations have been carried out where both 2p and 2s orbitals of fluorine are
included in the basis set. However, in a second step the 2s(F) orbitals have been suppressed
from it. This process can be performed using the extended Hückel and MSX α methods where
the suppression of orbitals from the basis set can easily be done. The comparison of 10Dq
values obtained by the two procedures is given in table 3. It can be noticed that while in the
normal calculation 10Dq is found to increase significantly on passing from R = 195 to 185 pm
(involving an exponent n close to 5), dramatic changes are however found when the 2s(F)
orbitals are removed. In fact, under this suppression 10Dq is found to remain constant or even
increase slightly when R does while the 10Dq value itself is found to experience a significant
decrement. Similar results to those gathered in table 3 have been obtained for other octahedral
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or tetrahedral complexes involving halides or oxygen as ligands. All these facts stress the key
role played by the small 2s(F) admixture in the antibonding eg orbital (figure 1) as regards
the R dependence of 10Dq [93, 208]. This conclusion is somewhat surprising because, for
complexes like CrF3−

6 , MnF4−
6 or NiF4−

6 , λ2
s lies typically between 2% and 4% [83, 196, 93, 30].

However, this puzzling situation can be rationalized by considering the mechanisms behind the
splitting between eg and t2g levels. As shown in figure 6, a |d, eg〉 orbital interacts through
the one-electron Hamiltonian, h, with two different linear combinations, |χp, eg〉 and |χs, eg〉,
with σ character. This interaction is also responsible for the λσ and λs admixture coefficients
(as shown in equations (12) and (14)) and produces in second-order perturbation an energy
raising of the antibonding eg level. By contrast, symmetry avoids any linear combination |χs,
t2g〉 and thus the |d, t2g〉 orbital can only interact with a |χp, t2g〉 linear combination with π
character, leading also to an increase of the t2g energy level. Bearing in mind these facts and
equations (15) and (17), the values of 10Dq for a complex with dominant ionic character can
be approximated by [208, 84, 93]

10Dq ∼= (εM(d)− εL(p)){ λ2
pσ − λ2

pπ} + (εM(d)− εL(s)) λ
2
s . (19)

This simple equation underlines that the influence of the 2s(F) admixture upon 10Dq can
be comparable to that derived from the 3d–2p hybridization for both eg and t2g levels. In fact, if
εM(d)−εL(p) is around 7 eV for a MF6 complex it can be expected that εM(d)−εL(s) ≈ 30 eV.
On the other hand, equation (16) stresses that the R dependence of 10Dq is ultimately related
to that of λ2

s which has been discussed in sections 3.1.1 and 3.2.2. Theoretical calculations
like those carried out on MnF4−

6 complexes reproduce the small dependence of the Racah
parameters, B and C , upon R [167, 198, 209]. This situation can roughly be understood
considering that in the case of a complex such parameters are determined by the time spent
by electrons of non-filled shells on the central ion [210]. In other words, a Coulomb integral
like 〈eg(1)eg(2)|e2/r12|eg(1)eg(2)〉 can be well approximated by

〈eg(1)eg(2)|e2/r12|eg(1)eg(2)〉 � N4
e 〈d(1)d(2)|e2/r12|d(1)d(2)〉. (20)

Therefore, if N2
e is slightly dependent upon R (as discussed in section 3.2.2) this also roughly

explains the slight sensitivity of B and C to changes in R.

4. Transferability of laws to lower symmetry systems

It is now crucial to discuss whether the laws obtained for octahedral MX6 complexes in
cubic lattices can or cannot be transferred to lower symmetry complexes which besides can
be embedded in a lattice which is non-cubic. It will be shown that the information derived
from spectroscopic parameters of low-symmetry systems using the laws described in section 3
can lead, in general, to wrong conclusions. Two reasons are behind this discrepancy: (i) the
symmetry change undergone by the MXN complex which can modify the nature of orbitals of
unpaired electrons; (ii) the existence of electric fields inside the MXN complex arising from the
ions of the rest of the lattice.

4.1. Modifications from the symmetry lowering of the complex

For the sake of clarity only complexes with D4h or C4v symmetry will be analysed in this
section. In particular, the isotropic superhyperfine constant of MX4 square-planar units and
tetragonal MX6 complexes (M = d9 and d7 ions) will first be considered. For an MX6 complex
with D4h symmetry there are two metal–ligand distances, namely the equatorial, Req, and the
axial, Rax. Thus, tetragonal MX6 complexes can be elongated (Req < Rax) or compressed
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(Req > Rax). In the analysed MX4 complexes and elongated MX6 complexes of d9 ions the
unpaired electron lies in the b1g ∼ x2− y2 orbital, while for the compressed ones and elongated
MX6 complexes of d7 ions it is in the a1g ∼ 3z2 − r 2 orbital.

4.1.1. Changes in isotropic superhyperfine and hyperfine constants. Theoretical calculations
have been performed for a variety of MX4 and MX6 complexes of d9 ions at different values of
the Req distance [200, 211, 212]. From them, the dependence of λ2

s upon Req has been explored.
It turns out that huge differences are found when comparing elongated and square-planar units
with compressed complexes [211]. Writing, similarly to (10),

λ2
s (eq) ∝ R−nS

eq , (21)

the values of the exponent ns for elongated and square-planar units are found to lie in the range
6–8 and they are thus quite comparable with those derived for octahedral MX6 complexes.
For this reason, the superhyperfine As(eq) constants of elongated NiF5−

6 and square-planar
NiF3−

4 complexes placed in different lattices have been used for deriving information about
Req [200, 165]. By contrast, the exponent ns calculated for a compressed CuF4−

6 complex is
found to be equal only to 2, while for CuCl4NH2−

3 ns = 1.5 [211]. The reason for this relevant
difference has been ascribed to the change undergone by the nature of the HOMO orbital on
passing from Oh to D4h symmetry in the case of the compressed complex. In this case, the form
of the 3z2 − r 2 orbital is no longer that described by equation (3) for an octahedral symmetry
because the hybridization with the 4s orbital of Cu2+ is now allowed [211]. By contrast, any
admixture of 4s or 4p orbitals into x2 − y2 is forbidden in D4h symmetry.

The study of the d7 centre Rh2+-doped NaCl has shown the importance of the 4d–5s
hybridization for understanding the superhyperfine constants in D4h symmetry. Although in
Oh symmetry the RhCl4−

6 complex would have a t6
2ge1

g configuration, it does however exhibit an
elongated geometry, the unpaired electron being thus in a ∼3z2 − r 2 orbital [213, 32]. As this
orbital has bonding with both axial and equatorial ligands, the corresponding superhyperfine
constants As(ax) and As(eq) have been calculated [33] as a function of the η > 0 parameter
defined by

Rax = ROC + 2η; Req = ROC − η (22)

where ROC stands for the equilibrium Rh2+–Cl− distance imposing an Oh symmetry.
Surprisingly, it is found that when Req is reduced As(eq) also decreases, while the ratio
As(ax)/As(eq) increases slightly. These puzzling facts can reasonably be accounted for by
considering the effect of the 4d–5s hybridization upon As(ax) and As(eq) [33]. The hybrid
wavefunction is briefly depicted by

|3z2 − r 2〉 + ε|(n + 1)s〉. (23)

Therefore if Rax > Req(η > 0) the repulsion of ligands upon the unpaired electron can
be lowered, enhancing the electronic density along the O Z axis while reducing that in the
perpendicular XY plane. This implies ε > 0 for this situation which is qualitatively depicted
in figure 7.

The importance of the nd–(n + 1)s hybridization for modifying in a tetragonal symmetry
the laws derived for Oh units can also be remarked when looking at the isotropic hyperfine
constant of complexes with an unpaired electron in 3z2 − r 2 [213–215, 108, 44]. Let us first
consider the CuCl4NH2−

3 centre formed in lattices like NH4Cl or CsCl [43–45]. In addition
to studies on this centre under different chemical pressures [215], EPR data on CuCl4ND2−

3
in ND4Cl under hydrostatic pressure reveal that the hyperfine constants, A‖ and A⊥, are both
positive and very sensitive to changes of metal–ligand distances [44]. These characteristics are
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Figure 7. Schematic picture of electronic density changes induced by the 4d(3z2 − r2)–5s
hybridization in Rh2+-doped NaCl.

thus quite different from the contribution of the polarization of inner shells [139] discussed
in section 3.1.1 and they have been ascribed to the nd–(n + 1)s hybridization. Due to this
mechanism the isotropic hyperfine constant, Aiso, can be approximated by

Aiso = −K + A(n+1)s. (24)

Here K > 0 reflects the contribution from inner shells, while A(n+1)s is proportional to
ε2 defined in equation (23). This confirms that Aiso > 0 values can be found by considering
a hybridization as low as ε2 ≈ 2% [215]. Moreover, a big dependence of A(n+1)s upon both
Req and Rax is found through calculations. For the CuCl4NH2−

3 centre MSX α calculations
lead to dAiso/dRax ≈ 25 MHz pm−1 [215], which has to be compared with the values
dK/dR = −0.4 MHz pm−1 reported in section 3.1.1. The same idea embodied in equation (24)
has been employed for explaining a null hyperfine tensor for RhCl4−

6 in NaCl [216].

4.1.2. Changes in laws involving charge transfer transitions. It was concluded in section 3.2.1
that a CT transition of an octahedral MX6 complex would experience a blue shift under
a hydrostatic pressure. Nevertheless, experimental results on (C2H5NH3)2CdCl4:Cu2+
show [217] that the elongated CuCl4−

6 unit in such a compound undergoes a red shift when
hydrostatic pressure is applied. This result points out again that conclusions reached for
high-symmetry complexes in insulators can hardly be transferred to systems with a lower
symmetry. For explaining this seemingly surprising result it is worth recalling here the basis
leading to the conclusion embodied in equation (12). If the calculations on octahedral MX6

complexes give dE/dR < 0 the conclusion (∂E/∂p)T > 0 comes from the decrement of
R induced necessarily by an increase of pressure. However, this statement is no longer true
when the symmetry is reduced to D4h and there are two different distances, Req and Rax, in
the complex. In this situation an applied hydrostatic pressure necessarily means a reduction
of the volume of CuCl4−

6 but not of both Req and Rax distances. If Rax = 290 pm and
Req = 230 pm, the axial bond is softer than the equatorial one. Then, an applied pressure
will reduce Rax but can also lead to a slight increase of Req provided there is a lessening of
the volume of the CuCl4−

6 unit. In this situation a red shift of a CT transition can be observed
if |∂E/∂Req| � |∂E/∂Rax|. Detailed calculations on CuCl4−

6 complexes support this view,
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Figure 8. FeF5O4− complex embedded in the KMgF3 lattice.

Table 4. As(eq) and As(ax) values (in MHz) measured for the FeOF4−
5 in KMgF3. Such values are

compared with As for FeF3−
6 in two cubic fluoroperovskites. Data come from [68, 70] and [218].

Lattice Centre As(eq) As(ax)

KMgF3 FeOF4−
5 72.3 30.8

FeF3−
6 71.2 71.2

RbCdF3 FeF3−
6 65.7 65.7

giving ∂E/∂Req = −256 cm−1 pm−1 and ∂E/∂Rax = −29 cm−1 pm−1 [217]. These figures
mean, in practice, that the energy of the first CT transition of the CuCl4−

6 complex is only
sensitive to variations of the equatorial distance. Therefore, the red shift observed for this
complex in (C2H5NH3)2CdCl4:Cu2+ under pressure likely reveals an increase of Req and a
reduction of the tetragonality.

4.1.3. The FeOF4−
5 centre in cubic fluorides: test of the superposition model. An interesting

system in which to explore the transferability of laws from Oh to C4v symmetry is the
FeOF4−

5 centre formed in cubic fluoroperovskites co-doped with both Fe3+ and O2− impurities
(figure 8) [68–70]. The local structure of this centre is determined once the two Fe3+–F−
distances, Req and Rax, and the Fe3+–O2− distance, called RO, are known. Through
EPR and ENDOR techniques the isotropic superhyperfine constants, As(ax) and As(eq),
corresponding to the axial and four equatorial F− ligands, respectively, of FeOF4−

5 have been
measured [68–70], and thus they can be compared with the As value for the Oh FeF3−

6 centre
in the same lattice [218, 219, 29]. As(ax) and As(eq) reflect the 3d(Fe)–2s(F) hybridization
describing the two unpaired electrons lying in the 3z2 − r 2 and x2 − y2 levels. Due to the
C4v symmetry of the centre, there is also a zero-field splitting term (equation (7)) in the spin
Hamiltonian. Efforts have been made to obtain information on the local structure from the D
parameter in equation (7) through the superposition model [71–73].

In table 4 are collected the values of As(ax) and As(eq) in the KMgF3 [68] lattice together
with the As value for the FeF3−

6 complex in the same lattice [218]. As As(eq) = 72.3 MHz
while As = 71.2 MHz for KMgF3:Fe3+, these results would support a slight contraction of the
equatorial distance on passing from FeF3−

6 to FeOF4−
5 in KMgF3 provided the law embodied in

equation (10) is true in C4v. In particular, assuming equation (10) and taking R = 1.93 Å for the
cubic centre in KMgF3: Fe3+ [30] there is obtained Req = 1.92 Å and Rax = 2.20 Å (table 5).
This conclusion, similar to that obtained by Siegel and Muller [71], is hard to accept because
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Table 5. Values (in Å) of the three metal–ligand distances of FeOF4−
5 in KMgF3 obtained through

different procedures.

Method Req Rax R0 References

Analysis of D through superposition model 1.88 2.01 1.95 [72]
1.94 2.02 1.80 [73]

Analysis of As(ax) and As(eq) using equation (10) 1.92 2.20 — [76]
DFT calculation on a 21 atom cluster 2.03 2.09 1.83 [76, 74]
DFT calculation on a 57 atom cluster 2.02 2.05 1.81 [76, 74]

the formation of a Fe3+–O2− pair would favour an increase of both Req and Rax distances with
respect to R = 1.93 Å for FeF3−

6 in KMgF3. DFT calculations [74, 76] have shed some light
on this puzzling problem, giving Req = 2.02 Å and Rax = 2.05 Å in the biggest employed
cluster (table 5). These values are consistent with an outwards relaxation of both equatorial
and axial ligands and a difference between Req and Rax much smaller than that derived through
equation (10). The failure of equation (10) to provide reasonable values of Req and Rax lies
again in the different nature of the ∼3z2 − r 2 orbital on passing from Oh to C4v symmetry. As
shown in equation (23), the 3d–4s hybridization is allowed under an F− → O2− substitution.
This process produces an extra negative charge on an axial ligand. Therefore, the energy of a
∼3z2 − r 2 electron is decreased by enhancing its probability of being in the perpendicular xy
plane rather than along the z axis. In the present case, this means that the admixture factor ε
in equation (23) is negative and thus favours that As(eq) > As(ax) even if Req = Rax [74, 76].
Calculated values of the ratio As(eq)/As(ax) are reasonably close to the experimental figure
As(eq)/As(ax) = 2.3 for FeOF4−

5 in KMgF3 [68, 76]. On the other hand, if O2− is replaced by
an F− vacancy it is found that As(eq)/As(ax) = 0.86 [76]. This is quite reasonable since the
replacement of F− by a vacancy favours that ε > 0 and thus As(eq) < As(ax).

Results gathered in table 5 cast serious doubts about the reliability of the superposition
model [220] widely used for deriving information on the local structure from the zero-
field splitting parameter, D. It is worth noting that this model is based on two hard
assumptions [162]: (i) the six bonds involved in a complex like FeOF4−

5 can be treated
independently, the value of D being the sum of quantities associated with all bonds; (ii) the
properties of a single bond are the same independently of the symmetry of the complex as a
whole. The first assumption is wrong when there is chemical bonding between the impurity
and ligands. Nevertheless, it can be more reasonable in cases when ligands can be well
approximated by point charges and thus the CF theory is not a bad description. Thus, this
situation can hardly be true in the realm of 3d impurities but might happen for trivalent rare
earth impurities.

4.2. Modifications due to electric fields from the rest of the lattice ions

4.2.1. Comparison between K2NaCrF6 and CrF3: does 10Dq follow R? Optical experiments
on K2NaCrF6 and CrF3 compounds gave some surprising results [221, 222]. Such compounds
involve CrF3−

6 units whose R values are well known through standard x-ray diffraction
methods: R = 1.93 Å for K2NaCrF6, while the figure for CrF3 (R = 1.90 Å) is slightly smaller.
The optical absorption in the visible region is governed by the absorption of CrF3−

6 complexes
and from the first spin allowed 4A2g → 4T2g transition the following 10Dq values are derived:
16 100 cm−1 for K2NaCrF6, while it is only 14 650 cm−1 for CrF3. These results can hardly
be understood through equation (9) with a positive value of the exponent n. Calculations
carried out by Pierlot et al [222] demonstrated that this amazing result can be well explained



R338 Topical Review

once the effects on the CrF3−
6 complex of the different VR potential in the two lattices are

taken into account. In essence, while VR is found to be almost flat for K2NaCrF6, (−e)VR in
CrF3 decreases the energy of electrons lying on ligands. As this effect is thus bigger for eg

electrons with σ character than for t2g this leads to a reduction of 10Dq . If this explanation is
right for a compound like CrF3 where a ligand is shared by adjacent complexes it should be
more valid when truly isolated impurities are involved. Along this line in the CT spectrum of
CuBr4(NH3)

2−
2 inserted in NH4Br the energy of the first Br− → Cu2+ transition is measured

to be only 6000 cm−1 higher than the corresponding to the NH3 ligand [223]. This difference
(certainly smaller than ∼15 000 cm−1 estimated from the optical electronegativity scale [131])
can however be explained by considering the effects of VR upon the complex [47]. As shown
in figure 3, VR reduces the separation between 2p levels of nitrogen and 3p levels of bromine
ligands.

4.2.2. Colour in gemstones: the puzzle of ruby and emerald. The ideas developed in
sections 2.3 and 4.2.1 can be of help for explaining the colour of gemstones where the impurity
is located in low-symmetry places. In this domain recent progress [227] has been made for
solving the puzzling problem of the difference in colour between ruby (Al2O3:Cr3+) and
emerald (Be3Si6Al2O18:Cr3+) [2, 9–11]. In both gemstones the colour is due to CrO9−

6 units
formed under the Al3+ → Cr3+ substitution. The local symmetry is D3 in emerald but only
C3 in ruby [10, 224]. In an approximate Oh description, the first excited state (from which
emission originates) is 2Eg(t3

2g) while the absorption in the visible comes from the spin allowed
4A2g(t32g) → 4T2g(t2

2geg) and 4A2g → 4T2g(t22geg) transitions. The sharp 2Eg(t3
2g) → 4A2g(t32g)

emission appears at 14 690 cm−1 for emerald while for ruby the corresponding energy is only
1.8% smaller [182, 225]. However, much bigger differences are observed in the absorption
spectrum. In fact, the 4A2g(t3

2g) → 4T2g(t22geg) transition is measured at 16 130 cm−1 for
emerald and at 18 070 cm−1 for ruby, leading to their characteristic green and red colours,
respectively [9–11]. Attempts have been made to explain this remarkable difference through
the ligand field theory assuming that [226, 2, 9–11]: (i) the average Cr3+–O2− distance, R, is
different in both gemstones; (ii) the energy of the 4A2g(t32g) → 4T2g(t2

2geg) transition, equal to
10Dq , follows the R dependence of equation (9).

Under these assumption the average Cr3+–O2− distance for ruby should then be ∼5 pm
smaller than for emerald. However, this conclusion is not easy to accept because the Al3+–O2−
distance in Be3Si6Al2O18 is 1.903 Å, and is thus a little smaller than the corresponding average
distance in Al2O3 (R = 1.915 Å) [224]. Thus, according to results on impurities in insulating
lattices (sections 2.4, 3.1.1 and 3.1.2) one would expect that the average Cr3+–O2− distance in
both gemstones is practically the same. This statement has recently been verified by EXAFS
measurements on both gemstones, leading to R = 1.97 Å [92, 224].

In another interpretation based on the CF approximation, however, a higher ionicity is
assumed for the Cr3+–O2− bond in Al2O3 than in Be3Si6Al2O18 [9, 224]. This would imply
a higher |zL| value in (18) for ruby than for emerald, thus explaining, albeit qualitatively, the
bigger 10Dq value of ruby. Nevertheless, a higher covalence in emerald than in ruby would
also imply that the energy of the 2Eg(t32g) → 4A2g(t32g) transition is higher for the former than
for the latter, a conclusion which is against experimental evidence.

The difference in colour between ruby and emerald can be reasonably accounted for
once the influence of the VR potential on the CrO9−

6 complex is considered [227]. From the
discussion in sections 2.3 and 4.2.1, the parameter 10Dq can be written as

10Dq = [10Dq(R)]v +�R. (25)

Here [10Dq(R)]v just means the 10Dq value corresponding to a complex in vacuo but at the
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Figure 9. Madelung potential, VR(x), on CrO9−
6 along metal–ligand directions for ruby and emerald

host lattices. Data are taken from [227].

Table 6. Calculated values of 10Dq, [10Dq]v and�R (defined in equation (25)) at the equilibrium
geometry of the CrO9−

6 unit for ruby and emerald. Data are taken from [227]. The experimental
10Dq value [9, 10, 224] is given for comparison. All values are in cm−1.

[10Dq]v �R 10Dq 10Dq (exp.)

Emerald 16 188 −449 15 739 16 130
Ruby 16 043 2136 18 179 18 070

right experimental distance. The quantity �R depicts the correction due to VR which in turn
reflects the different effect of such a potential upon eg and t2g orbitals. Calculated [10Dq(R)]v
and �R values using the experimental Cr3+–O2− distances (table 6) demonstrate that�R is the
main factor responsible for the different colour of both gemstones [227]. The main effect of
VR appears in ruby and it can be rationalized by looking at the picture of such a potential given
in figure 9. According to the low C3 symmetry, there is an electric field around Cr3+ (along
the metal–ligand directions) which is however absent in emerald, consistently with its D3 local
symmetry.

It is worth noting that VR has much less importance as far as the 2Eg(t3
2g) → 4A2g(t32g)

emission in such gemstones is concerned since the involved states both arise from the same
configuration [227]. This simple reasoning is consistent with the fact that the energy of the
emission lines in ruby and emerald only differ by 1.8% [225]. It should be noticed that VR can
also modify (but only slightly) the covalence in the t2g orbital, thus leading to changes of Racah
parameters and emission energy. A deviation of 3.5% with respect to the emission energy in
ruby has been reported for LiSc(WO4)2:Cr3+ [228].

5. Jahn–Teller instabilities in the ground state of impurities

5.1. Jahn–Teller effect in cubic crystals: the E ⊗ e problem

Strictly speaking, the JT instability appears when the ground state of a substitutional impurity
is orbitally degenerate in the local symmetry of the host lattice [113, 229]. For octahedral
symmetry this happens for d9 ions, d7 ions in the low-spin configuration, and d4 ions in the



R340 Topical Review

3z2–r2

3z2–r2

x2–y2

x2–y2

–2η

–2η

+2η

+2η

–η

–η

–η

–η
+η

Oh D4h elongatedD4h compressed

+η
+η

+η

Figure 10. Level scheme for the octahedral reference configuration (centre), tetragonal elongated
(right) and compressed (left) geometries corresponding to a d7 impurity in strong field situation.
The value of Qθ for an elongated situation is equal to

√
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high-spin one. In all cases the Eg ground state has an unpaired electron with σ character. This
state can be coupled to the stretching eg mode of the MX6 complex (figure 10) described by the
normal coordinates Qθ ∼ 3z2 − r 2 and Qε ∼ x2 − y2, or equivalently by the polar coordinates
ρ and ϕ defined through

Qθ = ρ cos ϕ; Qε = ρ sin ϕ. (26)

The present section will only be focused on the so-called E ⊗ e problem. It is worthwhile
noting that 3d6 and 3d7 impurities in octahedral symmetry and high-spin configuration have an
orbital triplet ground state [83]. This situation is often found in excited states of Oh complexes
involving d3, d5 or d8 ions and is discussed on section 7.

5.1.1. Description through a model Hamiltonian. Let us designate by ROC the equilibrium
distance of an MX6 complex when the octahedral symmetry is kept, and by H0 the
corresponding static Hamiltonian. The existence of adiabatic minima involving a small eg

distortion requires us first to explore [113, 229]

H = H0 + HLV; HLV = Vθ (r)Qθ + Vε(r)Qε (27)

where HLV depicts the linear E ⊗ e vibronic interaction. This term keeps the cubic symmetry
provided symmetry operations are performed on both the electronic, r, and vibrational, Qθ and
Qε , coordinates.

A central concept in the JT effect is the reference state [33, 94]. For the sake of clarity
let us consider a d7 ion in octahedral symmetry and S = 1/2. Although the actual ground
state is orbitally degenerate, there can be imagined as a first step an electronic configuration
which is orbitally a singlet. This artificial configuration can easily be built in the domain of
DFT by placing half an electron in both the x2 − y2 and 3z2 − r 2 orbitals with parallel spins.
Thus the (3z2 − r 2)0.5 (x2 − y2)0.5 configuration with fractional occupation is similar to the
A2g ground state of a d8 impurity in octahedral symmetry [83]. As is shown in figure 10, an
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elongation of the octahedron along the O Z axis would produce an increase (decrease) of the
energy of the x2−y2 (3z2−r 2) level and thus no variation of the total energy for this (3z2–r 2)0.5

(x2 − y2)0.5 configuration. This fact simply reflects that Eg �⊂ A2g ⊗ A2g and thus the ground
state energy around Qθ = Qε = 0 can simply be written as

E = EOC + 1
2 MLω

2
e (Q

2
θ + Q2

ε)+ · · · (28)

where ML is the ligand mass. Nevertheless, when the whole electron is placed in the
3z2 −r 2 orbital the ground state electronic energy can be lessened through a Qθ type distortion
(figure 10) described by equation (22). The non-symmetric distortion which appears on passing
from the reference state to the (3z2 − r 2)1 configuration can easily be understood by looking at
forces on ligands induced by changes of electronic density [230]. Let us call nJT the variation
of the electronic density on going from (3z2 − r 2)0.5 (x2 − y2)0.5 to (3z2 − r 2)1. It is equal to

nJT = 1
2 [n3z2−r2 − nx2−y2 ]; n3z2−r2 ∼ (3z2 − r 2)2; nx2−y2 ∼

[√
3(x2 − y2)

]2
.

(29)

Here n3z2−r2 means the electronic density corresponding to a ∼3z2 − r 2 wavefunction.
Therefore, the differential density

nJT ∼ 2z4 − (x4 + y4)+ 4x2y2 − 2z2(x2 + y2) (30)

at (0, 0, u) is just twice that at (u, 0, 0) or (0, u, 0) and of different sign [230]. This implies
that the electrostatic force associated with nJT is pulling inwards the equatorial ligands while
pushing outwards the axial ones, thus generating the Qθ distortion of figure 10.

Let us now consider the effects of HLV in equation (27), but only within the frozen {3z2−r 2,
x2 − y2} basis corresponding to H0. This gives rise to the following effective Hamiltonian,
Heff [113, 229]:

Heff = EOC + V1e(Uθ Qθ + UεQε)+ V2a(Q
2
θ + Q2

ε)I

2V2a ≡ MLω
2
e ; Uθ =

( −1 0
0 1

)
; Uε =

(
0 1
1 0

)
.

(31)

Here, V1e reflects the decrease of electronic energy by elongating the octahedron and placing the
electron in 3z2 −r 2. However, it should be remarked that the same energy gain can be obtained
by placing the electron in x2 − y2 and compressing the octahedron (figure 10). Furthermore,
the adiabatic solutions of the two states described by (31) are [113, 229]

E±(ρ; ϕ) = EOC ± V1eρ + V2aρ
2

�−(ρ; ϕ) = cos
ϕ

2
|3z2 − r 2〉 − sin

ϕ

2
|x2 − y2〉

�+(ρ; ϕ) = sin
ϕ

2
|3z2 − r 2〉 + cos

ϕ

2
|x2 − y2〉.

(32)

Thus, the equilibrium situations found for the lower branch are

ρ0 = V1e

MLω2
e

; EJT = −1

2
V1eρ0. (33)

Equation (33) just means that distortions described by the circle ρ = ρ0 are all equivalent.
This conclusion is a bit puzzling as it does not reflect the actual cubic symmetry of the problem
shown by equation (31). However, strict cubic symmetry is recovered once the anharmonicity
in the eg mode (inevitably present, as for any molecular vibration) is considered [231, 232, 94],
by adding a new Hanh term to the effective Hamiltonian (31)

Hanh = V3a(Q
3
θ − 3Qθ Q2

ε). (34)
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Figure 11. Left: adiabatic potential energy surface shape for the JT effect, called the ‘Tricorn’ or
warped ‘Mexican hat’, showing the positions of three minima (circles) and saddle points (triangles)
Right: variation of the ground state energy, E−, with the ϕ angle, alternating minima and saddle
points.

For an isolated MX6 complex one would expect V3a < 0, because it is easier to elongate
rather than to compress the axial bonds in a Qε = 0 and Qθ �= 0 distortion (figure 10). Once
the Hanh term is included in equation (32), the adiabatic energy for the lowest branch becomes

E− = EOC − V1eρ + V2aρ
2 + V3aρ

3 cos 3ϕ. (35)

If V3a > 0, at equilibrium there are three D4h distortions (characterized by ρ ≈ ρ0 and
ϕ = 0,±2π/3) which are fully equivalent, consistently with the cubic symmetry of (31)
and (35). The C4 axis of the three distortions (called O Z ′) is thus parallel to one of the crystal
cubic axes {O X, OY, O Z}. For passing from ϕ = 0 to ϕ = ±2π/3 there is now an energy
barrier B [232]

B ≈ 2ρ3
0 V3a. (36)

If V3a > 0, the maximum of the barrier corresponds to ϕ = π , ±π/3, where ϕ = π depicts
a compressed octahedron with an x2 − y2 unpaired electron (figure 11). For a D4h distortion
(Qε = 0, Qθ = ρ0) described by (22), the relation between ρ0 and η is given by

ρ0 = √
12η. (37)

As η typically lies in the 0.05–0.2 Å range and V3a ∼ 1 eV Å
−3

[231, 94], it turns out
that the barrier B is expected to lie in the 10–1000 cm−1 range. A recent study on several
E ⊗ e systems has shown that usually Hanh is the main factor responsible for the warping of the
E(ρ, ϕ) surface at least working at zero pressure [94].

Let us now consider the three wavefunctions, {�X,�Y ,�Z } associated with the equivalent
minima in figure 11:

�X = |3x2 − r 2〉|χ(2π/3)〉; �Y = |3y2 − r 2〉|χ(4π/3)〉;
�Z = |3z2 − r 2〉|χ(0)〉. (38)

Here, χ(ϕ) depicts the lowest vibrational state corresponding to the three minima at ϕ =
0,±2π/3. Going beyond the adiabatic approximation, the right wavefunction should actually
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be a linear combination of three, �X ,�Y and �Z , thus implying the existence of coherent
tunnelling. This phenomenon, first predicted by Bersuker [113], is of current interest for
quantum information processing [233]. In this situation the ground state is a vibronic Eg doublet
while the first excited state is a singlet A1g state. Such states are depicted by

|θ〉 = 1√
6
{2�Z −�X −�Y }; |ε〉 = 1√

2
{�X −�Y };

|A1g〉 = 1√
3
{�Z +�X +�Y }. (39)

The separation between both states, called 3�, reflects the tunnelling splitting which
increases when the energy barrier B does. Typically, 3� is estimated to be ∼1 cm−1 [113, 229].
The interaction of this vibronic Eg doublet with an external magnetic field, H, is similar to that
of a purely electronic doublet described through {x2 − y2, 3z2 − r 2} wavefunctions [139]. The
angular dependence of g factors related to the two Kramers doublets is [113, 229]

g± = g1 ± g2[1 − 3(n2
xn2

y + n2
x n2

z + n2
yn2

z )]1/2; g1 = g0 + 4ξ

(10Dq)
; g2 = q

4ξ

(10Dq)
.

(40)

Here n = H/|H| and q = 1 for the electronic {x2−y2, 3z2−r 2} doublet while q = 1/2 for
the vibronic one when overlap integrals like 〈χ(2π/3)|χ(0)〉 are neglected. For this situation
the reduction factor q = 1/2 can easily be obtained by computing

q = 〈θ |L2
z − L2/3|θ〉

〈3z2 − r 2|L2
z − L2/3|3z2 − r 2〉 , (41)

where |θ〉 is defined in (39).
Similarly to equation (5), the expressions of g1 and g2 in (40) are valid for an ionic

complex. The angular pattern of equation (40) is consistent with the cubic symmetry of the
model Hamiltonian described by equations (31), (34) and (35).

As was first pointed out by Ham [229], EPR spectra of JT impurities showing a tetragonal
rather that a cubic angular pattern come from random strains which are unavoidable in any real
crystal. In fact, linear and point defects are necessary for growing a crystal [234, 14]. Let us
now consider the eθθ ∼ 3z2 − r 2 and eεε ∼ x2 − y2 strains defined in the local {X ′,Y ′, Z ′}
coordinate system as

eθθ = 2eZ ′ Z ′ − (eX ′ X ′ + eY ′Y ′); eεε =
√

3

2
(eX ′ X ′ − eY ′Y ′). (42)

In accordance with (31), an eθθ strain (behaving like −Qθ ) produces, in first order, a shift
of the ground state equal to (2/

√
3)ROCeθθV1e. By contrast, no first-order effect comes from

the eεε strain [229]. As typical random strains are ∼10−4, the energy shift of the ground state
can be comparable to or higher than 3� and then the coherence among �X ,�Y and �Z in
equation (39) is destroyed [229]. In this case, the non-equivalence of the three minima in
figure 11 caused by random strains can lock the system in one of the three wells.

Just around the minima of these wells (described by equation (35)) the adiabatic energy
E(ρ0, ϕ) can be approximated by [232]

E � E(ρ0, ϕ0)+ 1
2 MLω

2
ϕ(ϕ − ϕ0)

2; ω2
ϕ = 9V3aρ

3
0 (43)

where ϕ0 = 0,±2π/3. Obviously, coherent tunnelling is favoured by a decrease of the F
parameter defined by [94]

F = B/(h̄ωϕ/2). (44)

It is worth noting here that random strains are also responsible for the inhomogeneous
broadening of zero-phonon lines [59].
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5.1.2. Phenomena related to the Jahn–Teller effect: experimental information. Low-
temperature EPR spectra provide us with relevant experimental information on the ground state
of E ⊗ e JT impurities in cubic insulators [31]. In the analysis of EPR data it is necessary to
clarify two crucial questions. (i) The nature of adiabatic minima. In the case of octahedral co-
ordination this means knowing what conformation (elongated or compressed) is the stable one.
(ii) The angular pattern displayed by EPR spectra. An angular pattern following equation (40)
supports the existence of coherent tunnelling, while if [g] and hyperfine tensors exhibit a tetrag-
onal pattern it means that random strains are able to lock the system in one of the three wells
which are no longer equivalent. This situation is briefly called a static JT effect [113].

In the realm of the E⊗e JT coupling, d9 impurities have been explored in cubic lattices like
alkali and silver halides, fluoroperovskites, and oxides like MgO or SrO [31, 34, 35, 235–239].
Also some attention has been addressed to d7 ions in low-spin configuration in alkali and
silver halides [31, 32, 213]. Apart from these cases involving an octahedral coordination, other
interesting E ⊗ e systems concern d1 ions (like Sc2+ or La2+) in cubic coordination [239].

Low-temperature EPR spectra of Cu2+, Ag2+ and Rh2+ in alkali and silver halides with
remote charge compensation show a tetragonal angular pattern typical of a static JT effect, the
C4 axis being one of the three principal cubic axes [31, 32, 34, 238]. Therefore for a general
orientation of the magnetic field, H, the EPR spectrum is a superposition of three different
spectra reflecting the angle between H and the three O X, OY and O Z axes. As strains are
randomly distributed inside the crystal the concentration of these three centres is the same. For
Cu2+- and Ag2+-doped alkali and silver halides and fluoroperovskites it is usually found that
g‖ − g0 > g⊥ − g0, implying that the unpaired electron lies in the x2 − y2 orbital and thus the
ligand octahedron is elongated. In the case of d7 ions (as Rh2+, Ir2+ or Pd3+) EPR results give
g‖ − g0 < g⊥ − g0, consistent with a location of the unpaired electron in the 3z2 − r 2 orbital
but again an elongated equilibrium geometry [31, 32, 213].

EPR spectra with g‖ = 2.06 and g⊥ = 2.4 observed for x-irradiated samples of LiF and
NaF doped with Ni2+ were attributed to the formation of compressed NiF5−

6 complexes [240].
However, subsequent theoretical [241] and experimental [242] work showed that such spectra
can hardly be assigned to NiF5−

6 complexes. JT NiF5−
6 species have been formed in several

cubic fluoroperovskites and in all cases it is found that g‖ − g0 > g⊥ − g0, thus implying an
elongated geometry [165, 243].

Relevant systems for establishing present ideas on the JT effect were obtained in the study
of Cu2+-doped cubic oxides. Coffman’s results on MgO:Cu2+ and CaO:Cu2+ [235, 236]
showed for the first time that EPR spectra of a E ⊗ e system do not necessarily display a
tetragonal symmetry but can follow the cubic pattern of equation (40). For MgO:Cu2+ the
experimental g1 = 2.195 and g2 = 0.108 values [235] are consistent with a reduction factor
q ≈ 0.5. The cubic pattern depicted by equation (40) was also encountered for d1 ions in
fluorite type lattices [239, 229].

As regards d9 ions in cubic oxides, the cubic pattern of equation (40) is also observed
for MgO:Ag2+ but not for Cu2+- and Ag2+-doped SrO and CaO:Ag2+ where the pattern
is tetragonal [35]. Furthermore, the experimental [g] tensor shows that the equilibrium
geometry is elongated for SrO:Ag2+ [35] but compressed for SrO:Cu2+ [237]. A compressed
geometry has also been inferred for CaO:Cu2+ from Raman spectra corresponding to vibronic
levels [244].

In accord with the analysis of section 5.1.1, the nature of the observed effect depends on
random strains and thus can be sensitive to crystal growth. Some influence of crystal growth
on EPR spectra has been found by Schoenberg et al [245].

Although in a static JT effect random strains destroy the coherence involved in
equation (39), low barriers among the three wells of figure 11 make possible the existence



Topical Review R345

of incoherent hopping [31, 113, 229]. Two main facts related to this phenomenon are: (i) the
change of relative intensity of EPR lines due to an applied uniaxial stress; (ii) the transition
from a static spectrum to an averaged one when the temperature increases.

Let us now consider as a guide an eZ Z = ζ > 0 external strain on a cubic crystal containing
a d7 impurity in a static situation. For centres having O Z ′ = O Z this means eθθ = ζ , and
according to (31) an increase of the energy of the 3z2 − r 2 orbital. By contrast, for centres with
O Z ′ = O X or OY a value eθθ = −ζ/2 is obtained from equation (42). This just means that
the difference of the ground state energy among O Z ′ = O Z and O Z ′ = O X or OY centres
is proportional to 3ζ/2 and thus at thermodynamic equilibrium the population of the former
centres should decrease. However, for achieving thermodynamic equilibrium it is necessary
that the system can jump from one well of figure 11 to another one in order to reorient the
principal C4 axis. EPR experiments on NaF:Ag2+ under an external eZ Z strain and H parallel to
〈100〉 directions reveal [238] that the increase of the g‖ signal at T = 4.2 K is ‘instantaneous’.

The incoherent jump among the three wells of figure 11 can also lead to an average EPR
spectrum when the temperature is raised [31, 113, 229]. If the jump frequency, νJ, follows an
Arrhenius law

νJ = νoe−B/kB T (45)

the averaging of parallel and perpendicular signals requires

(g‖ − g⊥)βH � hνJ. (46)

Even when (46) is not fulfilled, hνJ can however be higher than the separation between
two close superhyperfine lines and then an averaging can still be observed [165].

It is worth noting that when the temperature, T , increases but (46) is not yet fulfilled
the observed g‖ and g⊥ signals can depend on T [232, 246, 247]. Looking at figure 11,
a temperature increase means bigger departures from minima at ϕ = 0 and ±2π/3. But
according to equation (32) this departure implies a vibronic admixture of 3z2 − r 2 and x2 − y2

orbitals.

5.1.3. Microscopic origin of the energy barrier. The advent of reliable calculations has shed
light on the different phenomena related to the JT effect as well as on the actual values of
parameters described in section 5.1.1. It is worth noting that, for a well studied system like
CaO:Cu2+, values of the JT energy, EJT, inferred from the analysis of experimental results go
from 300 cm−1 to about 8000 cm−1 [244, 248–251].

Information on d9 ions (like Cu2+ or Ag2+) in cubic oxides and NaCl:Rh2+ derived
from ab initio calculations [171, 94] is collected in table 7. One can first notice the huge
differences between the absolute values of the barrier energies, |B|, obtained for NaCl:Rh2+
(|B| = 511 cm−1) and that for MgO:Cu2+(|B| = 4 cm−1) or CaO:Cu2+ (|B| = 20 cm−1).
This result, together with the computed values of the F factor (defined in (44)) for NaCl:Rh2+
(F = 6.4), MgO:Cu2+ (F = 0.11) and CaO:Cu2+ (F = 0.40), favours the observation
of a static JT effect in the first case and a coherent tunnelling for Cu2+-doped MgO and
CaO. Furthermore, the F factor for SrO:Cu2+ is found to be ∼20 times bigger than that for
MgO:Cu2+. Along this line the F = 2.3 value obtained for SrO:Ag2+ is again much higher
than F = 0.32 computed for MgO:Ag2+. These results thus favour a transition to a static JT
when MgO is replaced by SrO for both Cu2+ and Ag2+ impurities. This transition can partially
be related to the big decrement experienced by the V2a constant on passing from MgO:Cu2+ to
SrO:Cu2+ which is not balanced by the decrease of the linear coupling constant, V1e. Although
the big difference between V2a = 7 eV Å

−2
for MgO:Cu2+ and V2a = 1.1 eV Å

−2
for

SrO:Cu2+ is partially influenced by the quite different ROC values in both systems (table 7),
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Table 7. Values of different parameters for representative Jahn–Teller systems obtained through
ab initio calculations. ROC and ρ0 are given in Å, EJT and B in cm−1 while Vie and Via constants

(i = 1, 2, 3) are in eV/Å
i

units. The metal–ligand distance for the perfect host lattice, RH, is also
given for comparison. Results come from [171].

System RH ROC ρ0 EJT V1e V2a V3a B F

NaCl:Rh2+ 2.82 2.53 0.276 1832 1.42 2.70 −1.25 −511 6.4
MgO:Cu2+ 2.107 2.15 0.087 494 1.08 6.97 0.65 4 0.11
CaO:Cu2+ 2.405 2.32 0.126 567 0.52 1.85 0.65 20 0.40
SrO:Cu2+ 2.584 2.46 0.19 914 0.51 1.12 0.93 98 2.4
MgO:Ag2+ 2.107 2.20 0.097 674 1.73 8.79 0.44 −18 0.32
SrO:Ag2+ 2.584 2.54 0.251 1100 0.97 1.91 0.29 71 2.13

it cannot however be explained by assuming that V2a is proportional to R−3
OC, as could be

expected for an isolated ionic complex [14]. In the same vein, while V2a for MgO:Cu2+ is
about 3.5 times bigger than the value for NaCl:Rh2+ it is surprisingly found that |V3a| for the
latter is about twice that for the former system. Moreover, V3a is found to be negative for
NaCl:Rh2+ while it is positive for Cu2+ in cubic oxides. This result [171, 252] concurs with
the elongated equilibrium geometry reported for NaCl:Rh2+ [32] and the compressed one of
SrO:Cu2+ [237] and CaO:Cu2+ [244]. All these relevant issues cannot however be understood
by assuming that V2a and V3a only reflect the interaction of the impurity with ligands. Indeed
they require considering the elastic coupling of the complex with close neighbours of the host
lattice (section 2.4). In a ball-and-spring model (figure 5), the energy corresponding to M–X–A
bonds can be written as [168, 171]

E = E0 + (1/2)k(xL − xM − r0)
2 + (1/2)k ′(xA − xL − r ′

0)
2

+ (1/6)g(xL − xM − r0)
3 + (1/6)g′(xA − xL − r ′

0)
3. (47)

Here xM, xL and xA mean the position of the impurity, the ligand and the A ion lying in the
same 〈100〉 direction, respectively, while r0 and r ′

0 are parameters describing the two springs.
If the impurity and the A ion are fixed, the energy changes induced by variations of the ligand
around the equilibrium position, xL0, can be approximately described by

E ≈ E0 + (1/2)(k + k ′)(xL − xL0)
2 + (1/6)(g − g′)(xL − xL0)

3. (48)

Therefore, comparing (31) and (34) with (47) one can approximate

2V2a = k + k ′; 12
√

3V3a = g − g′. (49)

Then, if the complex is elastically decoupled from the rest of the lattice (k � k ′) it can be
expected that V3a < 0 because g < 0 for a normal bond. By contrast, as long as the relative
importance of k ′ increases there is a softening of the anharmonicity constant, V3a, which can
become positive when g′ > g [171].

The calculated values of k and k ′ for NaCl:Rh2+ give k ′/k = 0.38. This result points
out that the RhCl4−

6 complex is significantly decoupled from the rest of the lattice [94], a
fact which is ultimately due to the substitution of the monovalent Na+ ion by the divalent
Rh2+. This decoupling favours that V3a < 0 and thus that there is an elongated geometry, in
agreement with experiments [32]. However, a quite different situation is found for MgO:Cu2+
and SrO:Cu2+, where the calculated k ′/k ratio is equal to 3.3 and 2.2, respectively. In these
cases where V2a is dominated by k ′ it can also be expected that V3a > 0 and thus that there
is a compressed geometry. Systems involving Ag2+ ions appear to be in the border line. So,
though V3a = 0.29 eV Å

−3
found for SrO:Ag2+ is the lowest value of |V3a| in table 7, V3a and
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Figure 12. Splitting of the eg(3d) level under an Oh → D4h distortion, and effect of the pseudo-JT
interaction between a1g (3z2 − r2) and a1g (4s) orbitals, depicted through white arrows.

B are, however, calculated to be positive. Nevertheless, experimental EPR data on this system
indicate an elongated octahedral geometry [35].

It is worth noting now that there can be contributions to B that are different from the
anharmonicity. In particular, excited states (not considered in section 5.1.1) can play a role in
this issue [113, 94]. A mechanism involving an unoccupied (n+1)s level is depicted in figure 12
for an octahedral d9 complex. In D4h symmetry (but not in Oh) the 3z2 − r 2 orbital (but not
x2 − y2) can be coupled to the (n+1)s level through the linear coupling operator Vθ (r) defined
in (27). The repulsion between 3z2−r 2 and the (n+1)s level induces a supplementary decrease
of the energy of 3z2 − r 2, which is however proportional to Q2

θ [94]. The energy gain coming
from this pseudo-JT mechanism is thus bigger if two electrons are located on this orbital rather
than on x2 − y2, favouring again an elongated situation. Obviously, if the dominant interaction
of 3z2 − r 2 through Vθ (r) is with an a1g filled bonding orbital this mechanism alone would
enhance a compressed geometry.

Although in the E ⊗ e JT systems discussed up to now the anharmonicity appears to be the
main factor responsible for the barrier [171, 94], this is not necessarily true. In fact, the energy
barrier is proportional only to Q2

θ for the pseudo-JT mechanism and thus this mechanism could
dominate when the distortion becomes smaller due to an applied pressure.

5.2. Jahn–Teller effect in non-cubic crystals: the influence of VR

The machinery of the E ⊗ e JT effect has also been employed in trying to rationalize the
experimental results of d9 impurities in lower symmetry lattices. So, for explaining the
results on K2ZnF4:Cu2+ the formalism of section 5.1.1 has been used, though adding a
phenomenological internal strain which destroys the equivalence of the three wells depicted in
figure 11 [108, 246]. A similar scheme has been employed in connection with CuCl4(H2O)2−

2
centres [108, 253]. However, in the tetragonal CuCl4X2−

2 (X: H2O; NH3) complexes with two
different kinds of ligand it is hard to imagine an electronic ground state with orbital degeneracy
as a starting point [47].

The comparison of EPR results derived for K2ZnF4:Cu2+ [108, 246] and
K2MgF4:Ni+ [254] is certainly puzzling and can hardly be ascribed to a different internal
strain in both systems. Indeed, the two host lattices, K2ZnF4 and K2MgF4 (figure 13), are
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Figure 13. Left: unit cell of the K2MgF4 lattice and coordination polyhedron of Mg2+. Right:
electrostatic potential, VR, of the rest of the lattice along [100] and [001] directions on a seven-atom
cluster. The divalent cation is at the origin.

isomorphous while Cu2+ and Ni+ are isoelectronic. Furthermore, the six neighbour F− ions
of the divalent cation display a practically perfect octahedron for both K2ZnF4 and K2MgF4
lattices. In fact, calling Rh

ax and Rh
eq the axial and equatorial B2+–F− distances (B = Zn, Mg)

for the host lattice, then Rh
ax = 2.03 Å and Rh

eq = 2.02 Å for K2ZnF4, while Rh
ax = 2.00 Å and

Rh
eq = 1.99 Å for K2MgF4 [255, 127]. Despite all these similarities, EPR data prove that the

unpaired electron is placed in the 3z2 − r 2 orbital (O Z being parallel to the crystalline C4 axis)
for K2ZnF4:Cu2+ [108, 246] while it is lying in the x2 − y2 orbital for K2MgF4:Ni+ [254].

A first key for understanding this puzzling situation is to consider the electronic structure
of both impurities imposing octahedral geometry, that is making Rax = Req. As a salient
feature it is found that for K2MgF4:Cu2+ at Rax = Req = 2.02 Å the two 3z2 − r 2 and x2 − y2

levels are not degenerate but x2 − y2 is the lowest and there is a separation, �O = 0.39 eV,
between them [255]. Once again, this gap between A1g and B1g states comes from the action
of the tetragonal field due to the rest of the lattice, VR, on the CuF4−

6 complex. It is worth
noting that (−e)VR is smaller when the electron lies in [100] or [010] directions than when it
is located along the c crystal axis (figure 13). Therefore, VR makes the energy of the 3z2 − r 2

orbital higher than that corresponding to the x2 − y2 orbital [255]. This result is qualitatively in
agreement with the crystal structure depicted in figure 13. In fact, moving along [100] or [010]
directions of K2MgF4 the first neighbour of a F− ligand is a divalent Mg2+ ion while along the
[001] direction the corresponding neighbour is a monovalent K+ ion.

For understanding why in K2MgF4:Ni+ 3z2 − r 2 becomes the lowest level it is crucial
to take into account the role of the 4s orbital enhanced by a significant lessening of the 3d–4s
separation on passing from free Cu2+ (7.5 eV) to free Ni+ (2.5 eV) [130]. By virtue of this fact,
the 3z2 − r 2 orbital (but not x2 − y2) can be mixed with the 4s one (figure 12). This admixture
produces a decrement of the energy of the lowest level, helping to locate the 3z2 − r 2 level
below the x2 − y2 one [127].

Another clue to the present problem comes from the elastic anisotropy associated with the
layered structure of K2MgF4 and K2ZnF4 lattices (figure 13), making the equatorial M2+–F−
force constant harder than the axial one. In agreement with this fact the equilibrium geometry
of a big closed shell impurity (like Cd2+) in K2MgF4 is not described by Rax = Req but
by Rax > Req [127]. Therefore, as the ionic radius of the Cu2+ ion is bigger than that of
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Table 8. Evidence of the off-centre instability in the case of d9 ions in CaF2 type lattices and also
in SrCl2:Fe+ derived from experimental EPR and ENDOR data.

Host lattices

Impurity CaF2 SrF2 SrCl2 References

Ni+ Off-centre Off-centre Off-centre [50, 51, 256, 257]
Cu2+ On-centre Off-centre Off-centre [48, 56, 58]
Ag2+ On-centre On-centre Off-centre [48, 49, 261]
Fe+ — — Off-centre [259, 258]

Mg2+ one it can be expected that a Cu2+ impurity in the (3z2 − r 2)1.5(x2 − y2)1.5 closed shell
configuration should exhibit an elongated geometry. Let us designate by Rc

ax and Rc
eq (<Rc

ax)

the axial and equatorial distances corresponding to the (3z2 − r 2)1.5(x2 − y2)1.5 configuration.
Keeping this geometry, the gap, �, between A1g ((3z2 − r 2)1(x2 − y2)2 configuration) and
B1g ((3z2 − r 2)2(x2 − y2)1 configuration) can still be positive though � < �O, and thus the
ground state can be A1g although the equilibrium geometry is elongated [127]. Nevertheless,
similarly to what happens in the E ⊗ e JT effect, the transition from (3z2 − r 2)1.5(x2 − y2)1.5

to (3z2 − r 2)1(x2 − y2)2 also affords some additional relaxation of ligands, and so the final Rax

and Req values can be written as

Rax = Rc
ax + δRax; Req = Rc

eq + δReq. (50)

Due to the separation between 3z2 − r 2 and x2 − y2 levels, the most reasonable way of
lessening the total energy is through an additional compression described by δRax > 0 and
δRax < δReq. Thus, this reasoning shows that if � > 0 for K2MF4:Cu2+ (M = Mg, Zn) then
the unpaired electron can be in the 3z2 − r 2 orbital while the axial and equatorial distances are
very close indeed. By contrast, if� < 0 (such as happens for K2MgF4:Ni+) then δRax > 0 and
δRax > δReq. In other words, in this situation the influence of VR and the elastic anisotropy both
favour an elongated geometry. Calculated Rax and Req values for K2MgF4:Cu2+ (Rax = 1.98 Å
and Req = 2.03 Å) and K2MgF4:Ni+ (Rax = 2.16 Å and Req = 2.03 Å) are consistent with a
bigger tetragonal distortion in the latter system [127, 255].

The present analysis thus demonstrates that mechanisms different from those involved
in right E ⊗ e JT systems appear when the host lattice symmetry is reduced from cubic to
tetragonal. This conclusion thus concurs with those derived from the analysis of section 4.

6. Off-centre instabilities in the ground state of impurities

The displacement of an impurity out of the expected substitutional position in the lattice is
a subtle phenomenon which can modify strongly the local geometry and thus all properties
associated with the impurity. This phenomenon appears in well known systems like
KCl:Li+ [59, 150], KBr:Cu+ [60, 61] and also in some centres in semiconductors [53–55].
Nevertheless, for the sake of clarity this section will be focused on the off-centre motions along
〈100〉 directions observed in CaF2 type lattices containing TM impurities [48–51, 56, 256–261].
In table 8 are gathered the systems where the off-centre instability appears. Results embodied in
such a table can hardly be understood through simple arguments. For instance, it has often been
argued that the off-centre motion is favoured by a small size of the impurity [31]. However,
in the CaF2 host lattice Cu2+ and Ag2+ impurities remain on-centre [58, 261] while only the
monovalent Ni+ impurity, with a bigger size, undergoes a big off-centre excursion along 〈100〉
directions [50, 51]. Experimental evidence of this instability is afforded by the EPR spectrum
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Figure 14. Left: EPR spectrum of CaF2:Ni+ taken from [51]. Right: picture of the off-centre
motion of the Ni+ ion showing the overlap between the xy(Ni) and pσ (Fup) orbitals.

taken when H is parallel to a 〈100〉 direction, showing a superhyperfine interaction of the
unpaired electron with four equivalent fluorine nuclei (figure 14). Furthermore, additional
ENDOR results on CaF2:Ni+ [51] have not found any close defect which could be responsible
for the instability of the Ni+ centre.

The results collected in table 8 stress that the off-centre motion cannot necessarily be
ascribed to a ground state with orbital degeneracy. In fact, ENDOR results on SrCl2:Fe+ [259]
unambiguously prove the existence of an spontaneous off-centre displacement for a cation
whose ground state in cubic symmetry is found to be 4A2(eg

4t3
2g).

The vibrational mode responsible for the off-centre instability in CaF2 type lattices is the
odd t1u mode whose components are designated by X , Y and Z . The on-centre situation is
described by X = Y = Z = 0. Similarly to equation (27), the picture of the ground state
energy just around the on-centre position is conveyed by [57]

H = H0 + HLV; HLV = VX (r)X + VY (r)Y + VZ (r)Z . (51)

As the linear vibronic term, HLV, keeps the cubic symmetry, VZ (r) transforms like Z , etc.
Let us denote by |�0

n; j〉 the wavefunctions corresponding to the ground (n = 0) and excited
states (n � 1) of the unperturbed Hamiltonian, H0, where the index j reflects the possible
degeneracy. As H0 is invariant under the inversion centre operation then 〈�0

0; j |Vγ |�0
0;k〉 = 0

for γ = X,Y, Z . This situation is thus quite different from that found in the E ⊗ e JT problem
where the equilibrium geometry is essentially determined only by the matrix element of HLV

within the frozen {3z2 − r 2, x2 − y2} basis of H0 [57]. This simple argument also stresses
that, even at the beginning of the distortion, the admixture of odd excited states of H0 into the
ground one via HLV plays a key role as regards the off-centre instability. That admixture induces
rebonding effects as well as a second-order correction to the ground state energy. Thinking for
simplicity in a distortion along the O Z axis, this correction to the ground state energy, �E0, j ,
is given by

�E0, j = −
∑

n;l

|〈�0
0, j |VZ (r)|�0

n,l〉|2
En − E0

Z 2 = −1

2
KV Z 2. (52)

This pseudo-JT mechanism [262, 113] produces a softening of the ground state force
constant which is thus in competition with the positive force constant

K0 =
〈
�0

0, j

∣∣∣∣
∂2 H0

∂Z 2

∣∣∣∣�
0
0, j

〉
(53)
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Figure 15. Left: profile of energy for Z movement in Cu2+-doped CaF2 and SrCl2, obtained by
means of DFT calculations. They exhibit a minimum at Z0 = 0 and 1.1 Å, respectively. Right:
barrier energy against the off-centre movement, qMVI(Z), generated in a simple model of point
charges located at lattice sites [57].

involving only the ground state frozen wavefunction |�0
0, j〉. When K0 < Kv the instability

appears, and the curvature of E(Z) at Z = 0 becomes negative.
DFT calculations provide reliable information on the behaviour of E(Z) in the

neighbourhood of Z = 0 but also when Z becomes comparable to interatomic distances. This
is specially important when the off-centre displacement is characterized by Z0 � 1 Å because
the model based only on the linear vibronic interaction (equations (51)–(53)) is obviously not
consistent for this goal [52, 57]. As shown in figure 15, DFT calculations on CaF2:Cu2+ and
SrCl2:Cu2+ reproduce the off-centre instability for both systems (table 8), giving Z0 = 0.30 Å
and Z0 = 1.10 Å respectively [57].

A key point for understanding the difference between SrCl2:Cu2+ and CaF2:Cu2+ lies in
the electrostatic potential on the impurity due to other ions of the lattice. Let us call VI(Z)
such a potential. If we imagine the impurity as a rigid ion with charge qI, the electrostatic
energy qIVI(Z) increases when |Z | does (figure 15), thus favouring the on-centre situation.
Nevertheless, as VI(Z) ∼ a−1 (a is the lattice parameter) this potential barrier is bigger for
CaF2:Cu2+ than for SrCl2:Cu2+, thus making easier the off-centre motion for the latter system.
Mechanisms for overcoming the qIVI(Z) barrier involving changes of chemical bonding are
depicted in figure 16. Let us consider a pair of bonding–antibonding orbitals both belonging to
the same label when Z �= 0, the symmetry group being C4v. As the Z coordinate transforms
like A1 in C4v symmetry, just around Z = 0 HLV decreases (increases) the energy of the
bonding (antibonding) orbital (figure 16). Therefore, a decrement of the electronic energy can
be achieved if the antibonding level is not fully populated. Relevant antibonding orbitals in
this problem are b1(xy) and e(xz, yz) coming from t2g in cubic symmetry. As is shown in
figure 14, the overlap of the xy orbital with ligand wavefunctions is favoured by the off-centre
excursion. Therefore, if the number of electrons in the antibonding b1(xy) level is less than
two this favours the off-centre motion. Moreover, DFT calculations reveal that a decrease of
the population of the latter orbital actually enhances the off-centre instability [263].

It has recently been pointed out that unoccupied 4p orbitals can play a relevant role in
the off-centre instability of monovalent ions like Fe+ or Ni+ [263]. Under C4v symmetry the
4p orbitals are split into a1(4pZ ) and e(4pX ; 4pY ). The unoccupied e(4pX ; 4pY ) orbitals can
interact through the HLV operator with antibonding and bonding levels of the same label lying
below, leading to a decrease of the electronic energy. In accord with this view, DFT calculations
confirm [263] that an increase of the population of antibonding e(xz, yz) levels does favour the
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Figure 16. Simple scheme of the pseudo-JT interactions between three orbitals of the same
symmetry: fully occupied bonding, half-occupied antibonding and unoccupied antibonding. Big
arrows of the same type represent the vibronic interactions between pairs of orbitals.

off-centre motion in SrCl2:Fe+. It is worth noting that the 3d–4p separation for free Cu2+ ions is
about 15 eV, while it is only about 5 eV and 6 eV for free Fe+ and Ni+ ions, respectively [130].
Therefore, the source of instability coming from 4p orbitals is certainly more important for
monovalent ions than for Cu2+. This circumstance together with a lower qIVI(Z) barrier make
the off-centre motion easier in CaF2:Ni+ than in CaF2:Cu2+ [52, 57].

A reduction of the lattice parameter a induced by an applied pressure enhances the
electrostatic barrier due to VI(Z) and thus goes against the off-centre motion. Evidence of
the decrease of Z0 under a hydrostatic pressure has been found for SrF2:Cu2+ [56].

7. Instabilities in excited states of impurities: the Stokes shift

The equilibrium geometry of small molecules and also of impurities embedded in insulators
depends on the nature of the electronic state. For an octahedral complex, the transition from
the ground to an excited state can change the impurity–ligand distance, but also the local
equilibrium geometry [59, 95, 262, 264] due to the interaction with symmetric and non-
symmetric local or resonant modes [169, 265–267]. This local relaxation is responsible for
the Stokes shift, which is equal to 9000 cm−1 for the 4f → 5d transition of BaLiF3:Ce3+ [268]
but lies in the region 2000–3000 cm−1 for Cr3+ in halides [21–26, 85, 269]. This section is
focused on impurities like Cr3+, Mn2+ or Ni2+ placed in cubic halide lattices with an octahedral
coordination. In these cases, the first excited state responsible for the luminescence is an orbital
triplet T1g or T2g [83, 18, 20–26, 270]. Let us first consider the coupling of the excited state
only with the symmetric a1g mode (figure 17). If Rg is the equilibrium impurity–ligand distance
in the ground state, the adiabatic energy of the ground, Eg, and an excited state, Eex, can be
modelled by [59, 95, 183]

Eg = (1/2)MLω
2
a Q2

a; Eex = E0
ex + Va Qa + (1/2)MLω

2
a Q2

a; Qa = √
6(R − Rg).

(54)

A non-zero value of the coupling constant with the a1g mode, Va, implies that the impurity
is no longer stable in the ground state geometry once the excited state is reached. According
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Figure 17. Simple scheme showing the energies of the ground state, �, and one excited state, �′,
as a function of the normal coordinate corresponding to the fully symmetric a1g mode, Qa. For
the excited state, two energy surfaces are depicted, corresponding to an unrelaxed (dashed line) and
the actual relaxed state (solid line). Vertical absorption and emission electronic transitions are also
shown.

to the Frank–Condon principle, the energy of absorption, Eabs, and emission, Eemis, maxima is
thus given by

Eabs = E0
ex; Eemis = E0

ex − ES(a); ES(a) = 2Sah̄ωa = V 2
a /MLω

2
a . (55)

Here Sa is the Huang–Rhys factor of the a1g mode and ES(a) the corresponding
contribution to the Stokes shift. When Sa > 0.1 direct information on Sa can be derived from
low-temperature absorption or emission spectra, where vibrational progressions separated by
h̄ωa are sometimes well observed [21–25, 270, 271]. An orbital triplet state can also be linearly
coupled to the eg stretching local mode (figure 10). Working in the {xz, yz, xy} basis of the
triplet T state, this coupling is pictured by the following effective Hamiltonian [229, 262]:

Heff = Ve(Wθ Qθ + WεQε). (56)

In this case the two 3 ∗ 3 matrices Wθ and Wε are both diagonal.

Wθ =
( 1/2 0 0

0 1/2 0
0 0 −1

)
; Wε =

(−√
3/2 0 0

0 −√
3/2 0

0 0 0

)
. (57)

Once the coupling with the eg mode is incorporated, the Stokes shift, ES, can be written:

ES = Eabs − Eemis = ES(a)+ ES(e); ES(e) = 2Seh̄ωe = V 2
a /MLω

2
e . (58)

It is worth noting that the coupling with the non-symmetric JT mode does not modify the shape
of an optical transition from a singlet to a triplet state [62]. Nevertheless, it produces in low-
temperature optical spectra vibrational progressions additional to those coming from the a1g

mode [21–25].
Let us take as a guide the 4A2 → 4T2 transition for d3 ions in Oh or Td symmetry, whose

energy is equal to 10Dq [83]. For this case the coupling constant Va just reflects the sensitivity
of 10Dq to R variations, and thus, according to equations (9) and (54), it can be expressed as

VA = ∂Eex

∂QA
= 1√

NL

(
∂10Dq

∂R

)

Rg

= − 1√
NL

n
10Dq

Rg
(59)

where NL denotes the number of ligands [183, 178]. For CrF3−
6 complexes embedded in

fluoroelpasolite lattices, taking 10Dq = 16 000 cm−1, h̄ωa = 560 cm−1 and n = 5, there
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is obtained Va = 160 cm−1, Sa = 1.3 and ES(a) = 1400 cm−1 [183]. The contribution of
the JT mode to the Stokes shift, ES(e), is found to be quite similar to ES(a) for CrF3−

6 and
also MnF4−

6 units in fluorides [63, 168, 181]. Therefore, experimental values of ES around
2700 cm−1 for CrF3−

6 can reasonably be accounted for through the coupling with a1g and eg

stretching modes. In comparison with results for Cr3+ in halides, a small Sa = 0.2 value has
been reported for the 3A2 → 3T2 transition of CrO4−

4 [272]. This surprising result for a 10Dq
dependent transition partially reflects a big value of h̄ωa close to 800 cm−1 [273].

The Stokes shift is strongly connected with the quenching of luminescence through the �
parameter defined by [59, 128]

� = ES

2E0
ex

. (60)

As a decrease of � favours the appearance of luminescence [128, 39, 168] it
is relevant to know how the Stokes shift and Huang–Rhys factors are influenced by
pressure [181, 183, 274, 175]. Let us write the R dependence of a local vibrational frequency
ω j ( j = a, e) as

∂Lω j

∂LV
= 1

3

∂Lω j

∂L R
= −γ j; ( j : a, e). (61)

According to equations (9), (55), (59) and (61), the dependence of Sa and ES(a) on the
impurity–ligand distance is just given by [183]

Sa ∝ R9γa−2(n+1); ES(a) ∝ R6γa−2(n+1). (62)

Equation (62) implies that if n � 5 then Sa should increase upon increasing R, provided the
local Grüneisen constant, γa, is higher than 1.3. As stretching modes usually exhibit Grüneisen
constants close to 2, it can reasonably be expected that Sa decreases when pressure is applied.
This statement has been verified for Cs2NaScCl6:Cr3+ under hydrostatic pressure [23] and also
for VCl4−

6 complexes subject to two different chemical pressures coming from MgCl2 and
CdCl2 host lattices [275].

In accordance with equation (62), an increase of ES(a) when R increases requires γa � 2,
a condition which seems hard to be fulfilled. However, the experimental Stokes shift of MnF4−

6
complexes in cubic fluoroperovskites is found to increase with R [180]. Bearing in mind that
for the first excited state of MnF4−

6 E0
ex ≈ 6B + 5C − 10Dq [83] this quantity also increases

with R. For this reason � is found to be practically constant along the series [180, 168]. An
analysis of experimental ES values along the whole series indicates that γa or γe is close to
3 [168], which is not easy to be justified if experiments are carried out under a hydrostatic
pressure. Nevertheless, this puzzling situation can reasonably be explained if the variations
of ES are induced by a chemical pressure. If the complex is elastically coupled to the host
lattice (figure 5), then ωa and ωe can be modified simply by changing the host lattice and thus
modifying the k ′ force constant. By contrast, if the same lattice is kept the force constants
k and k ′ are unmodified under a hydrostatic pressure if only the harmonic approximation is
considered. This simple reasoning emphasizes that hydrostatic and chemical pressures are
no longer equivalent as far as vibrational properties of complexes (elastically coupled to the
host lattice) are concerned [168]. This statement is well supported by ab initio calculations
which confirm a value γe = 3 for MnF4−

6 complexes under a chemical pressure, while for
KMgF3:Mn2+ under a hydrostatic pressure it is found that γa = 1.3 and γe = 1.8 [181]. As a
salient feature, calculations reveal that k ′/k ≈ 2.5 and thus MnF4−

6 complexes are significantly
elastically coupled to the fluoroperovskite lattice. This situation is comparable to that described
in section 5.1.3 for systems like MgO:Cu2+: in both cases the host cation and the impurity ion
have the same nominal charge and thus, in view of the crystal structure, an important elastic
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coupling of the complex to the host lattice can be expected. A quite different situation appears
for cubic elpasolite lattices like K2NaAlF6 doped with Cr3+, where k ′/k ≈ 0.35 [26]. This is
consistent with the fact that the closest AlF3−

6 octahedra are well separated by monovalent Na+
ions and do not share any ligand [170].

The vibronic wavefunctions associated with (56) and (57) are [229]

|�Y Z 〉 = |yz〉|χ(2π/3)〉; |�X Z 〉 = |xz〉|χ(4π/3)〉; |�XY 〉 = |xy〉|χ(0)〉. (63)

Thus, at variance with what is found in (38) for the E ⊗ e Jahn–Teller problem, the
wavefunctions involved in (63) are orthogonal. Nevertheless, if we consider an off-diagonal
matrix element like 〈�Y Z |L Z |�X Z 〉 involving a purely electronic operator one can write

〈�Y Z |L Z |�X Z 〉 = 〈yz|L Z |xz〉〈χ(2π/3)|χ(4π/3)〉; 〈χ(2π/3)|χ(4π/3)〉 = e− 3
2 Se. (64)

Equation (64) thus accounts for the vibronic reduction of the spin–orbit coupling in
an orbital triplet state. This important reduction was discovered by Ham [229, 276]
and later verified experimentally by looking at the spin–orbit splitting of the zero-phonon
line [276, 264, 21]. From the present discussion, an increase of the applied pressure would
favour an increase of Se and thus a bigger spin–orbit splitting. No experimental verification of
this assertion has been reported up to now.

In agreement with (55), Sa and ES(a) depend on the coupling constant Va, which in turn is
proportional to d(10Dq)/dR (equation (57)). The analysis afforded in section 3.2.3 emphasizes
the subtle origin of the R dependence of 10Dq . Taking as a guide the CrF3−

6 complex, the
values of the exponent n and 10Dq itself were found to depend strongly on the small admixture
of ligand 2s wavefunctions into the antibonding eg orbital [93, 208]. Calculations where the 2s
wavefunctions have been suppressed from the basis set have led to a decrement of at least one
order of magnitude for Sj and ES(j) quantities ( j = a, e) [93].
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71 235108

http://dx.doi.org/10.1103/PhysRevB.61.9441
http://dx.doi.org/10.1080/10420150215780
http://dx.doi.org/10.1103/PhysRevB.63.134302
http://dx.doi.org/10.1103/PhysRev.133.A171
http://dx.doi.org/10.1088/0953-8984/14/20/201
http://dx.doi.org/10.1103/PhysRev.130.517
http://dx.doi.org/10.1063/1.471488
http://dx.doi.org/10.1103/PhysRevLett.86.5950
http://dx.doi.org/10.1088/0953-8984/17/37/017
http://dx.doi.org/10.1039/b412408a
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevB.46.8768
http://dx.doi.org/10.1103/PhysRevLett.82.4240
http://dx.doi.org/10.1103/PhysRevB.67.094108
http://dx.doi.org/10.1103/PhysRevB.56.14423
http://dx.doi.org/10.1103/PhysRevB.71.184117
http://dx.doi.org/10.1021/ic010348a
http://dx.doi.org/10.1103/PhysRevLett.55.418
http://dx.doi.org/10.1103/PhysRevB.48.17006
http://dx.doi.org/10.1016/S0370-1573(01)00018-7
http://dx.doi.org/10.1016/0038-1098(92)90004-S
http://dx.doi.org/10.1103/PhysRevB.64.115413
http://dx.doi.org/10.1063/1.473065
http://dx.doi.org/10.1103/PhysRevB.59.R6593
http://arxiv.org/abs/cond-mat/0206053
http://dx.doi.org/10.1103/PhysRevB.70.054103
http://dx.doi.org/10.1103/PhysRevLett.77.175
http://dx.doi.org/10.1038/32348
http://dx.doi.org/10.1103/PhysRevB.67.134401
http://dx.doi.org/10.1103/PhysRevB.65.212508
http://dx.doi.org/10.1103/PhysRevB.67.174506
http://dx.doi.org/10.1103/PhysRevB.55.6022
http://dx.doi.org/10.1103/PhysRevLett.47.384
http://dx.doi.org/10.1016/0038-1098(75)90289-6
http://dx.doi.org/10.1088/0953-8984/10/32/020
http://dx.doi.org/10.1103/PhysRevB.71.235108


R358 Topical Review
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[165] Villacampa B, Alcalá R, Alonso P J, Moreno M, Barriuso M T and Aramburu J A 1994 Phys. Rev. B 49 1039
[166] Barriuso M T, Aramburu J A and Moreno M 2001 J. Mol. Struct. (THEOCHEM) 537 117
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